
Impact Command Reference Manual
Impact: Integrated Modeling Program using Applied Chemical Theory

Version 4.0, April 2006

For inquiries about Impact TM contact:

Schrödinger
1500 SW First Avenue, Suite 1180
Portland, OR 97201–5881
503–299–1150
503–299–4532 fax
Email: help@schrodinger.com

Copyright c© 2006 Schrödinger, LLC All rights reserved.

CombiGlide, Epik, Glide, Impact, Jaguar, Liaison, LigPrep, Mae-
stro, Phase, Prime, QikProp, QikFit, QikSim, QSite, SiteMap, and
Strike are trademarks of Schrödinger, LLC. Schrödinger and Macro-
Model are registered trademarks of Schrödinger, LLC.
The C and C++ libraries for parsing PDB records are a copyrighted
work (1989) of the Regents of the University of California. All
rights reserved.
To the maximum extent permitted by applicable law, this pub-
lication is provided “as is” without warranty of any kind. This
publication may contain trademarks of other companies.
Please note that any third party programs (“Third Party Pro-
grams”) or third party Web sites (“Linked Sites”) referred to in
this document may be subject to third party license agreements
and fees. Schrödinger, LLC and its affiliates have no responsibility
or liability, directly or indirectly, for the Third Party Programs or
for the Linked Sites or for any damage or loss alleged to be caused
by or in connection with use of or reliance thereon. Any warranties
that we make regarding our own products and services do not apply
to the Third Party Programs or Linked Sites, or to the interaction
between, or interoperability of, our products and services and the
Third Party Programs. Referrals and links to Third Party Pro-
grams and Linked Sites do not constitute an endorsement of such
Third Party Programs or Linked Sites.

Impact Version 40215
April 2006

Chapter 1: Introduction to Impact

1 Introduction to Impact

ImpactTM (Integrated Modeling Program using Applied Chemical Theory) is
an integrated program for molecular mechanics simulations. It allows the
user to define the simulation system (usually a protein or DNA molecule in
aqueous solution) and to perform Monte Carlo or molecular dynamics sim-
ulations. In addition, the user has at her/his disposal a whole array of tools
for analyzing the results of the simulations. Finally, Impact is the “driver”
for the high-throughput ligand screening program GlideTM, the LiaisonTM

module for calculating ligand binding energies, and the mixed mode Quan-
tum Mechanics/Molecular Mechanics program QSiteTM.
This is the Impact Command Reference Manual. It documents using Impact
from the command-line, and all the keywords of Impact input files. Running
Impact from Maestro, and discussion of the principal applications Glide,
Liaison, and QSite, are more fully documented in other manuals:
• Glide Quick Start Guide

A collection of tutorial examples that illustrate the use of Glide.
• Glide User Manual

A description of Glide, focusing on its use from Maestro.
• Glide Technical Notes

A collection of case studies elaborating on the scientific methods and
results of Glide.

• Liaison User Manual

A description of Liaison, including its use from Maestro, a tutorial, and
notes on the scientific methods and results.

• QSite User Manual

A description of Liaison, including its use from Maestro, a tutorial, and
notes on the scientific methods and results.

1.1 A Brief History of Impact
The current commercial version of Impact and the Glide, Liaison, and QSite
products was developed from the academic Impact originally designed in the
laboratory of Professor Ronald M. Levy at Rutgers University. The following
people have contributed to the development of Impact:

1.1.1 Commercial Versions

• v4.0 (2005) Jay Banks, Yixiang Cao, Wolfgang Damm, Richard Friesner,
Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel Mainz, Rob
Murphy, Matt Repasky, and Linda Zhang.

• v3.5 (January 2005) Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, Rob Murphy, Matt Repasky, and Linda Zhang.

Impact 4.0 Command Reference Manual 1

Chapter 1: Introduction to Impact

• v3.0 (June 2004) Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, Rob Murphy, and Matt Repasky.

• v2.7 (October 2003) Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, Rob Murphy, and Matt Repasky.

• v2.5 (January 2003) Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, and Rob Murphy.

• v2.0 (June 2002). Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, and Rob Murphy.

• v1.8 (September 2001). Jay Banks, Yixiang Cao, Wolfgang Damm,
Richard Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy,
Daniel Mainz, and Rob Murphy.

• v1.7 (March 2001). Jay Banks, Yixiang Cao, Richard Friesner, Emilio
Gallicchio, Thomas Halgren, Ronald Levy, Daniel Mainz, Rob Murphy,
and Ruhong Zhou.

• v1.6 (November 2000). Jay Banks, Michael Beachy, Yixiang Cao,
Richard Friesner, Emilio Gallicchio, Ronald Levy, Daniel Mainz, Rob
Murphy, and Ruhong Zhou.

• v1.0 (June 1999). Jay Banks, Richard Friesner, Emilio Gallicchio, Avi-
jit Ghosh, Ronald Levy, Rob Murphy, Anders Wallqvist, and Ruhong
Zhou.

• v0.95 (Nov 1998). Jay Banks, Richard Friesner, Emilio Gallicchio, Avi-
jit Ghosh, Ronald Levy, Rob Murphy, Anders Wallqvist, and Ruhong
Zhou.

• v0.9 (Aug 1998). Jay Banks, Mark Friedrichs, Richard Friesner, Emilio
Gallicchio, Avijit Ghosh, Ronald Levy, Rob Murphy, Anders Wallqvist,
and Ruhong Zhou.

• v0.8 (May 1998). Jay Banks, Chris Cortis, Shlomit Edinger, Mark
Friedrichs, Richard Friesner, Emilio Gallicchio, Avijit Ghosh, Ronald
Levy, Rob Murphy, Anders Wallqvist, and Ruhong Zhou.

1.1.2 Academic Versions

• V7.0 (August 1996). Jay Banks, Yanbo Ding, Gabriela Del Buono,
Francisco Figueirido, Ronald Levy, and Ruhong Zhou.

• V6.0 (January 1994). Les Clowney, Francisco Figueirido, Ronald Levy,
Lynne Reed, Maureen Smith-Brown, Asif Suri and John Westbrook.

• V5.8 (December 10, 1991). Les Clowney, Francisco Figueirido, Douglas
Kitchen, Ronald Levy, Maureen Smith, Asif Suri and John Westbrook.

2 Impact 4.0 Command Reference Manual

Chapter 1: Introduction to Impact

• V5.7 (December 17, 1990). Steve Back, Teresa Head-Gordon, Douglas
Kitchen, Dorothy Kominos, Ronald Levy and John Westbrook.

• V5.5 and earlier (June 1990). Steve Back, Donna Bassolino, John
Blair, Fumio Hirata, Douglas Kitchen, David Kofke, Dorothy Kominos,
Ronald Levy, Asif Suri and John Westbrook.

1.2 Major Features
The major features of Impact include:
• Build Protein/DNA/RNA from Residue Sequences
• Energy Minimization
• Molecular Dynamics
• Monte Carlo Methods
• Fast Multipole Method (FMM)
• Multiple Time-step Algorithm r-RESPA
• S-Walking/J-Walking Methods
• Explicit Solvation Model
• Poisson-Boltzmann Continuum Solvation (PBF)
• Surface Generalized Born Solvation Model (SGB)
• OPLS-AA with Automatic Atomtype Recognition
• Flexible Schemes for Freezing Part of System
• QSite: Mixed-Mode QM/MM Simulations for Reactive Chemistry
• Liaison: Calculating and Predicting Ligand Binding Energies
• Glide: High-Throughput Ligand-Receptor Docking

1.3 Hardware Requirements
Schrödinger tests and distributes Glide 4.0, Liaison 4.0 and QSite 4.0 for
SGI IRIX, IBM AIX, and Intel-x86 compatible Linux-based machines at
this time. Impact 4.0 is not distributed separately from these products. For
current information on other platforms, please contact Schrödinger.

1.4 Installation
To install Glide, Liaison, or QSite, see the Schrödinger Installation Guide. A
PDF version of this manual and product documentation should be on your
product CD.
For those that want to get started quickly, installation is often as easy as
running:

% /bin/sh INSTALL

from the CD, and following the prompts. But please see the Installation
Guide.

Impact 4.0 Command Reference Manual 3

Chapter 1: Introduction to Impact

After installation, in the directory specified by your $SCHRODINGER environ-
ment variable, there should be an Impact directory labelled with the current
version number, at this printing, this is ‘impact-v40215’. In that directory,
there are seven subdirectories:

bin/ The executable binary and scripts for running all manner of
Impact-based jobs. Since these are platform-dependent, these
files are separated into further subdirectories with their plat-
form’s designation, e.g. Linux-x86/.

data/ The database parameters for the AMBER and the OPLS series
of force fields.

docs/ Electronic versions of the Impact Reference Manual (this docu-
ment) are located here.

lib/ Platform-dependent shared libraries needed by Impact are kept
here.

disabled_lib/
Disabled shared libraries, moved from the ‘lib/’ subdirectory
should be kept here. Disabling libraries should only be done
within Schrödinger’s recommendations.

samples/ The example files noted in this manual’s appendices.

tutorial/
Files that correspond to the instructional material in the Glide
Quick Start Guide, Liaison User Manual, and QSite User Manual
that walks you through various types of calculations.

A file ‘compatibility’ is also in your ‘impact-v40215’ directory, listing the
minimum version numbers of other Schrödinger products compatible with
this Impact release. All Schrödinger startup scripts will use this information
automatically.
The single important environment variable each Impact user has to have is
$SCHRODINGER. It should be set to your top-level installation directory for
Schrödinger products, e.g. /usr/local/bin/schrodinger. If you plan on
using some of the utility scripts from a command-line interface, you might
like to add the directory $SCHRODINGER/utilities to your PATH enviroment
variable, so that the scripts in this directory are accessible by name without
the full directory name prepended. If your command-line shell is sh, ksh, or
bash, this is done by:

(sh/ksh/bash)% export PATH=$PATH:$SCHRODINGER/utilities

and if your shell is csh or tcsh, then do:
(csh/tcsh)% setenv PATH $PATH:$SCHRODINGER/utilities

To run an Impact example, first make sure that $SCHRODINGER is set to your
Schrödinger installation directory. Then cd to one of example directory and
type:

4 Impact 4.0 Command Reference Manual

Chapter 1: Introduction to Impact

% $SCHRODINGER/impact -i input_file -o log_file

This will read from the input file and write the log file to log file. If -o is
not specified, Impact will set the log file name to be the same as your input
file, but with a .log extension in place of .inp.
Note that the log file (stdout) is not the file specified in the top write
command in the input file, which is usually more detailed than the log file.
Just typing impact with no arguments is equivalent to typing main1m: the
program then looks for an input file named ‘fort.1’, and writes to standard
output.
If an input file is specified but a log file is not, Impact constructs the log
file name by appending the suffix .log to the input file name, after first
removing the suffix .inp if it is present. Thus

% $SCHRODINGER/impact -i myfile

and
% $SCHRODINGER/impact -i myfile.inp

will both result in writing a log file called myfile.log.

1.5 Input Files
Instructions for Impact are placed in the main input file, which is then given
as the -i argument to the impact execution script.1 The program executes
commands in the input file sequentially, or as directed by control structures
in Impact’s input scripting language, DICE. See Chapter 5 [Advanced Input
Scripts], page 183, for details of control structures, variables, and advanced
features of DICE. Here is a simple example:

!! MAININPUT tutor.inp tutor.inp Main input file

!! MAINOUTPUT tutor.out tutor.out Main output file

!! INPUT paramstd paramstd Energy parameter file

!! INPUT tip4p.con tip4p.con Energy constraints

!! INPUT tip4p.rst tip4p.rst Coordinate and velocity restart file

!! DESCRIPTION FILE tutor.des

!! TITLE Tutorial example

WRITE file tutor.out -

title TIP4P Water MD *

CREATE

build solvent name solvent1 type tip4p nmol 216 h2o

QUIT

SETMODEL

setpotential

mmechanics

quit

1 Historically, the main input file had to be assigned to FORTRAN unit number 1, which
usually as the filename ‘fort.1’. The name may be different on other machines.

Impact 4.0 Command Reference Manual 5

Chapter 1: Introduction to Impact

read parm file paramstd noprint

enrg parm cutoff 9.5 listupdate 10 diel 1.0 nodist

enrg periodic name solvent1 bx 18.6353 by 18.6353 bz 18.6353

enrg cons read file tip4p.con

enrg molcut name solvent1

QUIT

DYNAMICS

input cntl -

nstep 1000 delt 0.001 stop rotations -

constant totalenergy nprnt 50 tol 1.e-7

read restart coordinates and velocities box real8 -

formatted file tip4p.rst

run

QUIT

END

The input file always begins with a description of where to write the output
generated by Impact during its execution, and ends with the keyword end
on a single line. The following meta-example is the simplest legal Impact
program:

write file fname title your_favorite_title *

end

An optional verbose value argument before the * specifies the verbosity of
output from various parts of Impact.
After the opening write statement, one specifies a sequence of tasks that
Impact should execute. In Impact tasks correspond to a high-level descrip-
tion of the computer experiment. For example, the task create sets up the
internal variables describing the molecular structure of the system of inter-
est, while inside of task dynamics one runs a molecular dynamics simulation.
Typically it is important that tasks are executed in the correct order, which
is usually dictated by common sense (the least common of the senses).2

A task by itself does not produce any side effects. For instance, the fragment
create

quit

would do exactly nothing. When Impact begins executing a task it sets up a
special environment, which is task-dependent. This environment exists until
the keyword quit is encountered, closing the task. Within each of these
environments different collections of commands (subtasks) are in effect. For
instance, within the create task one can execute the subtask build, but it
is not defined inside of the task dynamics. Trying to execute build inside
of the latter task would lead to an error.

2 For example, few people we know would run a dynamics simulation before setting the
system up.

6 Impact 4.0 Command Reference Manual

Chapter 1: Introduction to Impact

Impact requires that tasks (as well as their matching quit) be declared on
a line by themselves. Subtasks, on the other hand, come in several flavors.
They must always be the first non-blank word on a line and most often they
are followed on the same line by a series of subtask-specific keywords and
parameter values. A few, however, have the same formatting requirements
as tasks do, and must be ended by the keyword quit.3

In general, task and subtask names can be abbreviated by giving the first
four characters of the full name. In addition, some special abbreviations are
recognized. For example: minimize can be entered as minm; energy can be
given as enrg (as illustrated above); . . .
Because Impact is written mostly in FORTRAN the implementation puts a
limit on the maximum length of a line of 2000 characters. As the lines are
scanned lowercase letters are automatically converted to uppercase, unless
protected as shown below.4 The following characters are special:

‘"’ To protect a word and preserve the case. For example, if you
want to open a file named ‘/home/me/FooBar’, you must write
‘"/home/me/FooBar"’.

‘!’ An exclamation point ‘!’ flags a comment, and anything follow-
ing it until the end of the line is not read or processed.

‘-’ A hyphen at a line’s end indicates the command is continued on
the next line of the input file. Note that there should be at least
one space before the hyphen and that the sum of the lengths of
the continued lines must not exceed the limit of 2000 characters.

‘$’ String constants are delimited by this character as in ‘foo’.

‘’’ The quote is used to delimit names of variables used in Impact
input files, as in ‘while ’foo’ lt 10’.

‘*’ Sometimes portions of command lines are terminated with an
asterisk. It is required wherever it appears in the examples.
This character is also used as a wild-card in some strings used
to access tables (see Section 4.4 [Table (analysis)], page 174).

The top level of Impact is the task level where the objects of primary interest
are described, such as system creation, molecular dynamics or energy mini-
mization. When describing tasks in this documentation, meta-examples are
generally used, where the following conventions are followed. The order of
the keywords inside a subtask is generally not important though, of course,
a keyword cannot be separated from its value when one is required.

3 They act like secondary level tasks.
4 File names that are not protected are actually converted back to lowercase before opening

the file.

Impact 4.0 Command Reference Manual 7

Chapter 1: Introduction to Impact

keywords that should be typed exactly as shown will appear in this font.
Some keywords may be abbreviated by an initial portion of the
word, and the examples in this manual contain some such abbre-
viations; but in the absence of such an example, use the entire
keyword as shown.

variables
are meta-keywords, that is, you must replace variable with the
appropriate keyword, number, or filename.

[] is used to delimit keywords that are optional; an extra character,
‘+’ or ‘*’, may also be present. []+ means to repeat the contents
one or more times and []* to repeat the contents zero or more
times.5 For example

[foo | bar | baz]

means that one of the keywords foo or bar or baz may be used
in this location. If there are no ‘|’ characters present the body
is always optional, and if there is a a ‘+’ immediately following
the ‘]’, as in ‘[foo]+’, then repeat the contents 1 or more times
(here 1 or more occurrences of foo).

nil stands for the “empty item,” that is, no item at all, so that ‘[
foo | nil]’ is equivalent to ‘[foo]’.

() in an example indicates that the contents of the parentheses is
repeated as many times as indicated by the following expres-
sion. In the following expression the symbols ‘foo bar baz’ are
repeated four times.

(foo bar baz) repeated four times

Using the above rules, the meta-example
You should [run | debug] Impact [when it rains | nil]

is expanded in any of the following statements

You should run Impact when it rains

You should debug Impact when it rains

You should run Impact

You should debug Impact

One instance of a meta-example for the minimization task is:
minimize

read restart coordinates formatted file fname

steepest dx0 value dxm value deltae value

run

write restart coordinates formatted file fname

quit

5 The other potential uses of the square brackets are discussed in Section 5.1.1 [Lists (Back-
ground)], page 184.

8 Impact 4.0 Command Reference Manual

Chapter 1: Introduction to Impact

where value refers to the value to be assigned to the preceding keyword, and
fname refers to a file name.6

Some keywords are common to many different tasks and subtasks, so they
are described here.

file This keyword must be followed by the name of a file. In the
meta-examples this is generally shown as fname.7

name This keyword must be followed by the name of a species. In the
meta-examples this is generally shown as spec.

resnumber
This keyword must be followed by the number (integer value)
of a residue. In the meta-examples this is generally shown as
resn. It should be noted that residue numbers supplied in the
main input file have the following meanings: positive numbers
mean the residue numbering used in the original PDB file; neg-
ative numbers mean the reordered Impact residue numbers (i.e.,
sequential, starting with 1); 0 means all applicable residues.

atname This keyword must be followed by the name (character string)
of an atom. In the meta-examples this is generally shown as
atna.

fresidue

lresidue These keywords should be followed by a number specifying the
first and last residues of interest in the primary sequence.

echoon

echooff These keywords can appear at the task level, or the subtask level
of task analysis. They turn on or off the printing of certain
output. The default is echoon.

An aid to gauging the correctness of an input file is that, in general, as each
command is processed it is deleted from the command line. When processing
is finished, a check is made to see that no characters remain. The presence
of extraneous characters indicates that the input file was incorrectly formed.
This document frequently refers to input files that may be used as examples.
For example, in Section C.3.3 [Trajectory (example)], page 266, a system of
formaldehyde in water is first created and molecular dynamics is performed
and a trajectory file is created. The trajectory is subsequently read, and
statistics are gathered on the full dynamics run.

6 Value and number are usually equivalent to real and integer. Val or num are also used in
this context.

7 To refer to the file ‘junk’ you would type ‘file junk’.

Impact 4.0 Command Reference Manual 9

Chapter 1: Introduction to Impact

1.6 Structure File Formats
Via the build primary type auto (see Section 2.2.1.5 [Auto (primary
type)], page 24) and build types (see Section 2.2.1.11 [Types (build)],
page 30) commands, Impact can read and write Maestro, MDL SD, and
PDB files.
Historically, Impact used PDB file formats for all input structure files, and
this is still required for the AMBER86 force field. Other file formats have
to be converted into PDB files first before any Impact simulations can be
performed in such situations.
The freely available program Babel is a program that converts different file
formats, and currently supports input file formats:

Input file type

1. Alchemy 2. AMBER PREP

3. Ball and Stick 4. MSI BGF

5. Biosym .CAR 6. Boogie

7. Cacao Cartesian 8. Cambridge CADPAC

9. CHARMm 10. Chem3D Cartesian 1

11. Chem3D Cartesian 2 12. CSD CSSR

13. CSD FDAT 14. CSD GSTAT

15. Dock PDB 16. Feature

17. Free Form Fractional 18. GAMESS Output

19. Gaussian Z-Matrix 20. Gaussian Output

21. Hyperchem HIN 22. MDL Isis

23. Mac Molecule 24. Macromodel

25. Micro World 26. MM2 Input

27. MM2 Ouput 28. MM3

29. MMADS 30. MDL MOLfile

31. MOLIN 32. Mopac Cartesian

33. Mopac Internal 34. Mopac Output

35. PC Model 36. PDB

37. JAGUAR Input 38. JAGUAR Output

39. Quanta 40. ShelX

41. Spartan 42. Spartan Semi-Empirical

43. Spartan Mol. Mechanics 44. Sybyl Mol

45. Sybyl Mol2 46. Conjure

47. UniChem XYZ 48. XYZ

49. XED 50. M3D

and output file formats:
Output file type

1. DIAGNOSTICS 2. Alchemy

3. Ball and Stick 4. BGF

5. Batchmin Command 6. Cacao Cartesian

7. Cacao Internal 8. CAChe MolStruct

9. Chem3D Cartesian 1 10. Chem3D Cartesian 2

11. ChemDraw Conn. Table 12. MSI Quanta CSR

13. Dock Database 14. Wizard

10 Impact 4.0 Command Reference Manual

Chapter 1: Introduction to Impact

15. Conjure Template 16. CSD CSSR

17. Feature 18. Fenske-Hall ZMatrix

19. Gamess Input 20. Gaussian Cartesian

21. Gaussian Z-matrix 22. Gaussian Z-matrix tmplt

23. Hyperchem HIN 24. Icon 8

25. IDATM 26. Isis

27. Mac Molecule 28. MacroModel

29. Micro World 30. MM2 Input

31. MM2 Ouput 32. MM3

33. MMADS 34. MDL Molfile

35. Mopac Cartesian 36. Mopac Internal

37. PC Model 38. PDB

39. JAGUAR Z-Matrix 40. JAGUAR Cartesian

41. Report 42. Spartan

43. Sybyl Mol 44. Sybyl Mol2

45. MDL Maccs file 46. XED

47. UniChem XYZ 48. XYZ

49. M3D

Before you run babel, you need to setup an environmental variable $BA-
BEL DIR:

% setenv BABEL_DIR your_babel_directory

% export BABEL_DIR= your_babel_directory

The easiest way to run babel is in manual mode:
% babel -m

and follow instructions to select desired input and output file formats. You
can also run babel from the command line, as in

% babel -ix myfile.xyz -renum -oai myfile.dat "AM1 MMOK T=30000"

This will create a MOPAC input file with atom 1 from myfile.xyz as atom
1 in myfile.dat. For details of how to run babel, etc, consult the README
files under the babel directory. babel also comes with Schrödinger’s product
Jaguar, and is accessible therein via the jaguar babel command.

1.7 Force Field
In molecular modeling there are several different force fields used to de-
scribe the interactions among atoms and molecules. Some of the well known
ones are OPLS, MMFF, AMBER, MM3, CHARMm, and GROMOS. Impact
currently supports OPLS-AA8 and AMBER869. Both force fields are appli-
cable to protein simulations, but only OPLS-AA is applicable to ligand (or
protein-ligand) simulations, and only AMBER86 is applicable to DNA/RNA
simulations. These two force fields are described in more detail below, along
with a polarizable OPLS force field methodology under active development
in Schrödinger.

8 W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Amer. Chem. Soc., 118, 11225–
11235 (1996)

9 S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, J. Comput. Chem., 7, 230–
252 (1986)

Impact 4.0 Command Reference Manual 11

Chapter 1: Introduction to Impact

1.7.1 OPLS-AA

The OPLS-AA force field, which was developed by the Jorgensen group, is
an effort to develop a parameterization that reproduces liquid state prop-
erties of molecules. Again this is a force field that uses experimental data
from the liquid state and quantum mechanical calculations for intramolecu-
lar bond, angle, and torsion motions to set the constituent parameters. The
intramolecular interaction is given as,

Vintra =
∑

bonds

Kr(r − req)2 +
∑

angles

Kθ(θ − θeq)2 + Vtorsion

where Vtorsion written as,

Vtorsion =
∑

i

V i
1

2
[1 + cos(φ)] +

V i
2

2
[1− cos(2φ)] +

V i
3

2
[1 + cos(3φ)] .

The non-bonded interaction is given as a van der Waals terms together with
an electrostatic term (R is again the atom-atom distance),

Vinter =
∑
i<j

[
4εij

(
σ12

ij

R12
ij

−
σ6

ij

R6
ij

)
+
qiqj

Rij

]
.

Note that in this description the dielectric constant is set to its proper value
of 1.0. For molecules containing atoms connected by a distance of more than
3 bond-lengths the atom-atom interaction is given by the Vinter -term. The
(1,4)-interactions are scaled by a factor of 1/2. The non-bonded parameters
ε and σ for each atom-pair is constructed from the atomic values by the
geometric mean combination rule,

εij =
√
εiεj

σij =
√
σiσj.

It is also possible to use the partial charges read from a Maestro or Macro-
Model format structure file instead of those provided by OPLS-AA, using the
cmae keyword documented in Section 2.2.1.5 [Auto (primary type)], page 24.

1.7.2 AMBER86

The AMBER86 force field developed by Kollman and co-workers provides
a general description of the intra- and intermolecular interactions. All the
atoms are treated explicitly. Although the form of the force field is very
general, this force field is chiefly designed to be applied in in the area of
molecular biology and thermodynamics of small organic molecules. Given a
set of coordinates of the system the total potential energy is calculated from

Vtotal = Vintra + Vinter

12 Impact 4.0 Command Reference Manual

Chapter 1: Introduction to Impact

where the intramolecular energy is schematically written as

Vintra =
∑

bonds

Kr(r − req)2 +
∑

angles

Kθ(θ − θeq)2 +
∑

dihedrals

Vn

2
[1 + cos(nφ− γ)]

and the non-bonded or intermolecular term is likewise written as

Vinter =
∑
i<j

[
Aij

R12
ij

− Bij

R6
ij

+
qiqj

εRij

]
+

∑
H−bonds

[
Cij

R12
ij

− Dij

R10
ij

]
.

The atom-pair distance is denoted Rij and the sum runs over all unique
atom pairs. This force field is semi-empirical, i.e., the parameters are de-
rived partly from experimental data (non-bonded terms) and partly from
quantum chemical calculations (intramolecular terms). It also contains an
empirical model of the dielectric constant ε modeled as a distant dependent
quantity where ε(Rij) = Rij. For molecules containing atoms connected by a
distance of more than 3 bond-lengths the atom-atom interaction is given by
the Vinter -term. However, interactions separated by exactly 3 bond-lengths
(1,4-interactions) are scaled by a so called 1,4-scaling factor. A factor of
1/2 is used for both Lennard-Jones and Coulombic interactions. The non-
bonded parameters Aij and Bij are constructed by combination rules from
a set of van der Waals parameters for the constituent atoms

Aij =
√
AiAj

Bij =
√
BiBj.

The Cij and Dij are explicitly given for all hydrogen bonded cases.
The AMBER86 force field is superseded by the AMBER95 and later force
fields developed by the Kollman group. AMBER95 omits all explicit hy-
drogen bond terms. However, Impact does not support AMBER95 or later
force fields in the AMBER series.

1.7.3 PFF

The PFF module is only available under special license from Schrödinger.
The Polarizable Force Field (PFF) is under continuing development at
Schrödinger. For details consult the papers by Banks et al.10, and by Stern
et al.11

A brief description from Stern is presented below.

10 J. L. Banks, G. A. Kaminski, R. Zhou, D. T. Mainz, B. J. Berne, and R. A. Friesner, J.
Chem. Phys. 110, 741 (1999)

11 H. A. Stern, G. A. Kaminski, J. L. Banks, R. Zhou, B. J. Berne, and R. A. Friesner, J.
Phys. Chem. B, 103, 4730 (1999)

Impact 4.0 Command Reference Manual 13

Chapter 1: Introduction to Impact

Consider a polarizable system represented by fluctuating charges qA on a set
of atoms A and induced dipoles ~µB on a (possibly overlapping or identical)
set of atoms B. The system is also subject to an “external” electrostatic
potential φ0(~r) with gradient −~E0(~r). The superscript zero denotes that this
electrostatic potential and field do not arise from the fluctuating charges or
dipoles, but from some other source, for instance, a set of fixed charges.
Each fluctuating charge qA has a self-energy χAqA+ 1

2
JAq

2
A, where χA and JA

are parameters corresponding to the atomic electronegativity and hardness.12
The interaction with the external potential gives a term φ0

AqA where φ0
A is

the value of the external potential at site A. Pairs of fluctuating charges
qA, qA′ give rise to an interaction energy qAJAA′qA′ where JAA′ depends on the
distance between sites A and A′. For instance, if we assume the interaction
is Coulombic, then

JAA′ =
1

|~rAA′ |
,

where ~rAA′ = ~rA −~rA′ is the displacement vector from site A′ to site A.
The dipolar terms are quite similar. If αB is the polarizability tensor for atom
B, then an induced dipole ~µB has a self-energy13 1

2
~µB ·α−1

B ·~µB. In addition,
~µB interacts with the external field giving a term −~E0

B ·~µB, where ~E0
B is the

value of the field at site B. Pairs of dipoles ~µB, ~µB′ give rise to an interaction
energy ~µB · JBB′ · ~µB′ , where JBB′ depends on the locations of sites B and
B′ and must be a dyadic so that the interaction energy is independent of
the choice of coordinate system. If we assume the interaction is Coulombic,
then

JBB′ =
1

|~rBB′ |3
(

1− 3
~rBB′ ~rBB′

|~rBB′ |2
)

Finally, the fluctuating charges and dipoles interact (if they are on different
sites). Each pair of fluctuating charges qA, ~µB gives an interaction energy
qA
~JAB · ~µB. As before ~JAB depends on the locations of sites A and B and

in this case is a vector. Assuming the interaction is Coulombic,

~JAB =
~rAB

|~rAB|3
.

The total electrostatic energy due to the fluctuating charges and dipoles may
therefore be written

U =
∑
A

(χA + φ0
A) qA −

∑
B

~E0
B · ~µB +

1
2

∑
A

JA q
2
A +

1
2

∑
B

~µB · α−1 · ~µB′+

1
2

∑
A 6=A′

qA JAA′ qA′ +
1
2

∑
B 6=B′

~µB · JBB′ · ~µB′ +
∑
AB

qA
~JAB · ~µB.

12 S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys., 101, 6141, (1994); A. K. Rappé
and W. A. Goddard III, J. Phys. Chem., 95, 3358, (1991).

13 P. Ahlström, A. Wallqvist, S. Engström, and B. Jönsson, Mol. Phys, 68, 563 (1989)

14 Impact 4.0 Command Reference Manual

Chapter 1: Introduction to Impact

It is convenient to define JAA ≡ JA and JBB ≡ α−1
B ; in this case the energy

may be written slightly more simply:

U =
∑
A

(χA + φ0
A) qA −

∑
B

~E0
B · ~µB +

1
2

∑
AA′

qA JAA′ qA′+

1
2

∑
BB′

~µB · JBB′ · ~µB′ +
∑
AB

qA
~JAB · ~µB.

(1)

Let us now define NA +3NB dimensional vectors q and v, and an NA +3NB

by NA + 3NB matrix J, where NA is the number of fluctuating charges and
NB is the number of dipoles:

q ≡ (qA, ~µB)

v ≡ (χA + φ0
A,−~E0

B)

J ≡
(
JAA′ , ~JAB′ , ~J †

A′B,JBB′

)
,

Then above equation may be written succinctly as a matrix equation:

U = v†q +
1
2
q†Jq.

For any given set of atomic electronegativities χA and values for the external
potential and field φ0 and ~E0 at the sites A and B, the fluctuating charges
and induced dipoles are determined by minimizing eq. (1) with respect to
each variable qA, ~µB. It can be seen that in the case of an all-dipole system,
this is equivalent to imposing the usual self-consistent field requirement on
the induced dipoles. If, as in this case, there are no constraints on the
variables, then minimizing leads to a set of linear equations whose solution
is

q = −J−1v.

Constraints on the fluctuating charges, such as the requirement that each
molecule remain neutral, may be handled by the method of Lagrange multi-
pliers, or by a transformation to a reduced set of unconstrained coordinates
q′, where C†q′ = q for some matrix C. In this case the solution is given by

q = −C†(CJC†)−1Cv.

We note that the response ∆q to any additional perturbation ∆v, for in-
stance, an external, applied electrostatic potential or field from additional
charges—is simply

∆q = −J−1 ∆v

∆q = −C†(CJC†)−1C ∆v,

Impact 4.0 Command Reference Manual 15

Chapter 1: Introduction to Impact

for unconstrained and constrained coordinates, respectively. The response to
external perturbations does not depend on v—that is, on the electronegativ-
ities and original fixed charges we have placed in the system. A polarization
model for a given molecule therefore involves a specification for the elements
of the matrix J, that is, the interactions between pairs of fluctuating charges
and dipoles.

1.8 Online Documentation
Schrödinger publishes PDF versions of all product manuals at the website
http://www.schrodinger.com/Support/pdf.html. An up-to-date copy of
this manual, the Impact Command Reference Manual, along with other man-
uals, are linked there.

16 Impact 4.0 Command Reference Manual

http://www.schrodinger.com/Support/pdf.html

Chapter 2: Setup System

2 Setup System

This chapter describes tasks to set up Impact simulations: create system,
and set up models, etc. This should be done before any real simulation tasks
can be performed.

2.1 Set commands
These commands are not true tasks, in that they are completely specified
on one line, with no subtasks and no quit keyword. They are used to
specify conditions of the Impact execution that typically remain the same
throughout the duration of the program, so they should usually occur at
the beginning of the input file, either immediately after or even before the
initial write command that specifies the main output file. In particular,
set ffield may have unpredictable results if it occurs in the middle of an
input script, or if two or more set ffield commands are issued in the same
script.

2.1.1 Set Path
This command specifies a directory where Impact will look for input files
specified in subsequent commands. The directory name is added to a
list stored in memory. When Impact starts up, the list contains ‘.’
(the current working directory), and a default directory that normally is
‘$SCHRODINGER/impact-v4.0/data’. The set path command adds one di-
rectory to the end of this list. Thus the specified directory will be searched
only for files that cannot be found in the current working directory, the de-
fault directory, or directories specified by previous set path or set ffield
commands. To specify more than one directory, use more than one set path
command, one for each directory in the order you wish them to be searched.

• set path dirname

2.1.2 Set Ffield (or Set Force)

This command specifies the force field that Impact uses to calculate energies
and forces. This has two consequences:

A directory that contains the parameter and residue database relevant
to the specified force field is added to the beginning of the search path,
after only the current working directory. Thus the correct residue and
parameter files will be used instead of the default ones.
A flag is set that indicates which force field is being used. This flag
determines the functional form used in energy and force calculations.
• set ffield ffname

Currently the values that can be used for ffname are AMBER86, as described in
Section 1.7.2 [AMBER86 (ffield)], page 12, OPLS19991, as described in Sec-
tion 1.7.1 [OPLS-AA (ffield)], page 12, OPLS2000, OPLS2001,and OPLS2003

1 OPLS is a synonym for OPLS1999.

Impact 4.0 Command Reference Manual 17

Chapter 2: Setup System

for fixed-charge force fields, as well as OPLS_PFF_2000 and OPLS_PFF_2003
for Schrödinger’s polarizable force field. OPLS2001 is the default force field.
OPLS20002 includes optimized torsional parameters for peptides and new
non-bonded parameters for sulfur that replace the corresponding parameters
of the standard OPLS force field. OPLS2001 uses the same force field param-
eters as OPLS1999, but the atomtyping is done with general SMARTS-based
pattern-matching and additional bond type indices for assigning stretch,
bend, and torsional parameters. OPLS2003 is a new parameterization that
preserves the core OPLS non-bond parameters and the protein parameters
from OPLS2000.
The current set of residue files for OPLS contains only amino acid residues,
water molecules, one ion (chloride), and a few small molecules such as N-
and C-terminal “blocker” residues. Nucleic acid and other residues will be
added in the future.
OPLS_PFF_2000 and OPLS_PFF_2003 select Schrödinger’s Polarizable Force
Field (see Section 1.7.3 [PFF (ffield)], page 13), with bonded and torsional
parameters adapted from one of the fixed-charge force fields and atomtyping
schemes OPLS2000 and OPLS2003. In order to use the PFF in a simulation,
it is also necessary to include the pff keyword in the SETMODEL task. See
Section 2.3.4.1 [Mmechanics (setpotential)], page 42.
The PFF module is only available under special license from Schrödinger.

2.1.3 Set Noinvalidate

Maestro files can embed properties, such as energies and structure identifiers,
that implicitly only correspond to the particular structure, connectivity, or
even precise Cartesian coordinates of the atoms. Maestro files can encode
these dependencies in such a way to tell other Schrödinger software when
they are invalid and should be deleted from the structure.3

For example, if an input structure already has a property r_mmod_
Potential_Energy-OPLS-AA, this is an energy that corresponds to the
particular geometry of the molecule. If any of the internal coordinates are
changed, the energy value is no longer valid. Such properties are removed if
and when geometries are modified, and upon output of the structure, they
will not appear.
Sometimes, however, it is desired to retain all the input properties through
a complicated workflow. Perhaps you have minimized a number of ligand
structures with MacroModel, and then dock them with Glide using its in-
ternal conformation generator. Normally, when Glide does its conformation
generation, it invalidates all the input properties known to depend on the
internal coordinates of the structure, including the MacroModel energies. If

2 G. A. Kaminski, R. A. Friesner, J. Tirado-Rives and W. L. Jorgensen, J. Phys. Chem. B,
105, 6474–6487 (2001)

3 These dependencies are denoted by a m_depend block in Maestro files.

18 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

you want your output PoseViewer files to keep these properties, even if they
don’t correspond to the coordinates anymore, and also have the Glide pose
properties, which do correspond, then you must add this set noinvalidate
property to your Glide input file.

• set noinvalidate

Caution: This option is a temporary measure. In the future, we intend
to introduce an easy-to-use method in Maestro to tailor each property’s
invalidation setting, so you can clear invalid ones while fixing other ones, to
your preference.

2.2 Task Create
The object of this task is to set up, modify and process the internal coordi-
nates of the molecules in the simulated system. Very few things can be done
without first setting up the system, so this task is typically among the first
to be executed. Remember, however, that Impact input files should start
with a line that identifies the name of the log file and a descriptive title.
Thus, the typical Impact input file has the structure

write file logfile title Some title *

set commands if desired
create

Set up the simulation system
quit

setmodel

Set up the model parameters
quit

Perform the calculations
end

2.2.1 Subtask Build

This subtask is used to initialize or modify the connectivity arrays, internal
and cartesian coordinate arrays, residue arrays, and charge arrays for the
molecule(s) specified by the user. The modification may be a conformational
change (i.e., a change in secondary structure), or the insertion of connectivity
information (for crosslinks), or the addition of a user defined residue into a
molecule. ‘Build primary’ must be called before any further calculations to
fill the arrays.

2.2.1.1 Primary

This option builds up a protein (or peptide) molecule from a list of amino
acids, or DNA or RNA from a list of nucleotides. It builds up the primary
sequence by, for example, filling the connectivity arrays using a residue data
base containing all standard L-amino acids and nucleotides. Default internal
cartesian coordinate arrays are also filled by using equilibrium bond lengths
and angles, which are obtained from the all-atom residue data base. All side
chain torsion angles for proteins are initially trans (defined as 180 degrees).

Impact 4.0 Command Reference Manual 19

Chapter 2: Setup System

The options are described below, where D in D-nucleotides is deoxy, and R
is ribo.

2.2.1.2 Primary type Protein
• build primary name spec type [protein | other] -

[residue_list end | read file fname] -

[sidechain neut [all | acid | base]] -

(chainname chain_name) repeat for all chains -

[[substitute resn1 to resn2 [rnumber resn]]]* -

[crosslink name spec [file fname] -

[rname resna aname atna rname resna aname atna]+ -

[cut cutoff_distance]] [print]

Builds the molecular structure for a protein or user-defined (other)
molecular species. The structure can be either specified by an optional
list of three-letter residues (see Appendix A) or read from a PDB file.
The structure need not be contiguous, i.e., in one chain. One can specify
a break in the sequence, which starts a new chain, by specifying ‘***’
instead of the name of a residue. For each chain one can also specify a
name through which it will be identified later. For instance,

build primary name peptide1 type protein ala ala gly ser leu end

would build a small peptide with five amino acids (only one chain) and
build primary name peptide2 type protein -

ala gly ser leu *** ser ser ala end -

chainname A chainname B

would construct a two-chain heterodimer where the first chain is named
‘A’ and the second ‘B’.4

If a file to be read is specified, it must be a PDB file; Impact will con-
struct the primary sequence as directed there. Otherwise the sequence
will be built using residue list. Caution: Building a protein using amino
acid templates works only with set ffield amber86 and set ffield
opls, and not with the default OPLS2001 force field (see Section 2.1.2
[Set ffield], page 17).
The program is also capable of specifying that sidechains be neutral-
ized to respond to various local pH environments. The default is to
use ionized sidechains for LYS, ARG, ASP and GLU, but use neutral
HID for Histidine. The keywords sidechain neut all specifies all the
ionized side chains in LYS, ARG, ASP, and GLU to be neutral by delet-
ing H or adding H atoms; keywords sidechain neut base specifies the
basic ionized sidechains, LYS and ARG, to be neutral; similarly, key-
words sidechain neut acid specifies ASP and GLU to be neutral. The
residue HID (HIS with H atom at delta position) can be substituted
to HIP (protonated HIS) or HIE (HIS with H at epsilon position) by
the keyword substitute, which is described next. Alternatively, neu-
tral sidechains can be specified by giving LYN, ARN, ASH, or GLH as

4 Chain names must be one character long, as in the standard PDB format.

20 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

residue codes in the residue list or input PDB file, and specific forms
for HIS can be specified as HID (default), HIE, or HIP.
The keyword substitute allows one to modify the primary sequence
(most useful if the sequence is obtained from a PDB file) and it must
appear after the list of residues or PDB file; otherwise Impact will have
trouble figuring out what to substitute. In this context resn1 and resn2
refer to the names of the residues, as in ‘ala’, and rnumber, as always, to
the number of the residue that must be replaced. If rnumber is omitted,
ALL residues of name resn1 are changed to resn2. For example,

build primary name peptide2 type protein -

ala gly ser leu *** ser ser ala end -

chainname a chainname b -

substitute ala to gly rnumber 1

is equivalent to
build primary name peptide2 type protein -

gly gly ser leu *** ser ser ala end -

chainname a chainname b

After the primary structure has been built, crosslinking between any
two residues can be specified. This option should be used only if the
automatic keyword (see Section 2.2.1.7 [Crosslink (build)], page 27) is
given later. The decision whether to build a crosslink or not is taken
by checking whether the distance between the specified atoms (in all
residues with the given name, e.g., all ala residues) is smaller than
cutoff distance. The atomic coordinates are read from the PDB file
fname, which should therefore have been specified either on the same
line or in a previous ‘build primary’ line. Failure to do this will result in
unpredictable results. To force a crosslink between specific residues (see
Section 2.2.1.7 [Crosslink (build)], page 27). Caution: If only disulfide
bonds are desired the rname and aname parameters need not be specified.
The default cutoff distance is 2.2 Å.

It should be noted that resn (or resnumber or rnumber) residue numbers
supplied in the main input file have the following meanings: positive numbers
mean the residue numbering used in the original PDB file; negative numbers
mean the reordered Impact residue numbers (i.e., sequential, starting with
1); 0 means all applicable residues.

2.2.1.3 Primary type DNA/RNA
• build primary name spec type [DNA | DNAB | DNAA | DNAZ | RNA] -

[base_list end] [read file fname] -

(chainname chain_name) repeat for all chains -

[[substitute resn1 to resn2 [rnumber resn]]]* -

[crosslink name spec [file fname] -

[rname resna aname atna rname resna aname atna]+ -

[cut cutoff_distance]]

[nopom] [print]

Impact 4.0 Command Reference Manual 21

Chapter 2: Setup System

DNA and RNA molecules can also be constructed, using D or R-
nucleotides. This option is valid only for the AMBER force field. Note
that DNA and DNAB are equivalent since this is the most common form.
The coordinate information is stored in the residue database in the
form of internal coordinates based on the B-DNA structure presented
by Arnott & Hukins, Biochemical and Biophysical Communications, 47
(1972). In order to build A-DNA, angle and dihedral internal coordi-
nates are replaced by those of A-DNA. These internal coordinates of
A-DNA were also obtained from the Arnott paper. In order to build
Z-DNA, angle and dihedral internal coordinates are replaced by those
of Z-DNA. The internal coordinates of Z-DNA were obtained from Rich
& Wang, Science, 211, (1981).
An important aspect of the DNA built by Impact is that hydrogen atoms
are explicitly defined in the molecule. (Caution: Since the hydrogen
atoms are explicitly defined, the resulting structures are quite large.)
The standard DNA molecule is built in the 5′ → 3′ direction Each strand
must be given in this direction. The program will not work correctly
for mismatched base pairs, or for DNA that is not specified as shown
below.
The B-DNA molecule is similar to the Watson-Crick double helix. This
helix is right-handed. The A-DNA molecule is also right handed, but
repeating units have a 3′-endo sugar pucker as opposed to the C2′-endo
sugar pucker in B-DNA. Z-DNA is a left-handed helix containing only
guanine and cytosine bases where cytosine has a C2′-endo sugar pucker
and guanine has a C2′-exo to C1′-exo sugar pucker.
The base list for DNA must be of the form

[ohb] list of bases [he] *** -

[ohb] list of complementary bases [he]

where ohb represents the starting OH group before the phosphate and he
represents the final capping hydrogen. (Analogously, ohe represents the
final capping OH group for a terminal phosphate, and hb is the capping
hydrogen of a base at the beginning of a sequence.) The bases should
be selected from ade, thy, gua, cyt or pom (see below). The keyword
nopom removes the phosphates from each DNA base. They can be added
as separate residues by adding pom between residue names. This may
be necessary for reading AMBER coordinate files. The default phosphate
groups are added to each DNA nucleotide—thus the phosphate and the
base have the same residue number. This is necessary for reading most
PDB files.

2.2.1.4 Primary type Ligand
• build primary name spec type ligand [mole mname] -

[read file pdb_filename | residue_list end]

22 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

This is the command to define a molecular species of type ligand (can
be used for any organic molecule in any context).
Caution: The species type ligand is deprecated in favor of type auto
(see Section 2.2.1.5 [Auto (primary type)], page 24) and may disappear
in future releases. The residue template file generation feature of the
build primary type ligand command is also deprecated in favor of the
more general write template command (see Section 3.1.7 [Read/write
(minimize)], page 75). Both of these commands are only compatible
with set ffield amber86 and set ffield opls (see Section 2.1.2 [Set
ffield], page 17).
The option type ligand is generally used to generate a template
file from a PDB file specified by the command option ‘read file’
pdb filename. Impact template files (see Appendix A [Impact Files],
page 217) contain all of the geometrical, topological and energetic in-
formation of the molecule. They are used to build macromolecules
(see Section 2.2.1.1 [Primary (build)], page 19) and can be modified
to achieve direct control over the molecular structure. The command
option residue_list end instead is generally used when a template
file was generated from a previous run and the user found it necessary
to manually modify it to suite some special need (such as when an un-
usual chemical group in not properly recognized by the automatic atom
typing code).
The read file pdb_file option builds a template from the PDB file,
and the residue_list end option is used when the template file is
made available from previous runs (usually for manual editing). The
first option is the most common; it reads in a PDB file and uses the
first part of the file name as the residue name. For example, if the PDB
file has a name ‘drug1.pdb’, the template file will be named ‘drug1’.
The program will assign the OPLS-AA atom-types (the AMBER force
field is not supported for the type ligand) for each atom in the ligand
molecule, and find parameters for bonds, angles, proper torsions and
improper torsions. All the information will be organized in a template
file using the same format as in a protein or DNA residue, as described
in Appendix A [Impact Files], page 217. The template files are free
formatted for reading.
Because no more than two species can be simultaneously defined, it may
be necessary to put multiple molecules in one species. This can be done,
for example, as follows:
create

build primary name 1stp type protein mole prot read file 1stp.pdb

build primary name drug type ligand mole liga read file liga.pdb

build primary name drug type ligand mole ligb read file ligb.pdb

read coordinates name 1stp mole prot brookhaven file 1stp.pdb

read coordinates name drug mole liga brookhaven file liga.pdb

read coordinates name drug mole ligb brookhaven file liga.pdb

Impact 4.0 Command Reference Manual 23

Chapter 2: Setup System

quit

Here a protein is entered as species 1stp and two ligands are entered
into the single species drug. Note the extra syntax mole is needed in
this case specifying the molecule names, both in the build and read
sections. In general, for inputs involving multiple molecules, the mole
name syntax is required any place where name species-name is used.
Note that an explicit solvent species must be treated as a unique species
and that other molecule types can not be added into the solvent species.
The specification of the solvent species thus does not provide for a mole
syntax.

2.2.1.5 Primary type Auto
• build primary type auto name spec -

[mole molname] [check] -

[gotostruct structnum | nextstruct] -

read [maestro | pdb | sd] file filename -

[tagged tagname] [cmae] [fos | fobo] -

[notestff | notest]

The ‘type auto’ option of the ‘build primary’ command is generally used
to interface Impact to the Maestro graphical front end. An Impact species
of type ‘auto’ contains internally all of the information necessary to produce
a molecular file in Maestro format that can later loaded into the Maestro
graphical front end. If the species is constructed using exclusively files in
Maestro format it is ensured that graphical and other information originally
contained in the input Maestro files is carried over to the Maestro file in out-
put (see Section 3.1.7 [Read/write (minimize)], page 75). See Section C.1.8
[Simulation from Maestro file (m2io)], page 241 for an example. The ‘build
primary type auto’ command also supports input from PDB and SD files;
in these cases Impact essentially converts these formats to Maestro format
internally.

name Specifies the identifier spec of the species to be created or the
of the existing species to which a new molecule is to be added.

mole Specifies the identifier molname of the molecule to be created.

check Instructs Impact to compare the molecular structures of the
molecules currently loaded in the species with the ones being
loaded. If the two sets are considered chemically identical, ex-
cept perhaps for a conformational difference, the automatic atom
typing of the molecules are not performed even if the build
types (see Section 2.2.1.11 [Types (build)], page 30) is sub-
sequently invoked. Otherwise all the molecules present in the
species are deleted and replaced with the molecule being loaded
and the ‘build types’ will preserve its normal behavior.

24 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

The check keyword is necessary after the first structure when
reading multiple structures sequentially into the same Impact
species. Without it, the atoms of the new structure are ap-
pended to those already in the species, rather than replacing
them. When reading multiple structures in a while-endwhile
loop (see Section 5.3.1.1 [while (control)], page 196), the first
build primary command must occur before entering the loop,
without the check keyword, whereas the build primary com-
mand inside the loop must be build primary check. Such loops
are standard procedure in the Glide docking module (see Sec-
tion 3.6 [Docking], page 99).

maestro Specifies that the molecular file in input is in Maestro format
(usually denoted by a .mae file extension). The ‘tagged’ option
is used to specify that only the subset of the atoms tagged with
the specified tag tagname are to be loaded. Sets of atoms are
sometimes tagged by the Maestro front end to identify special
structures of the system (such as the ligand in a ligand-receptor
complex, often tagged LIG_) in order to instruct Impact to han-
dle them in special ways (such as loading the ligand in a different
Impact species from the receptor).

tagged An option used with files in Maestro format. See note above.

pdb Specifies that the molecular file in input is in PDB format (usu-
ally denoted by a .pdb file extension).

sd Specifies that the molecular file in input is in MOL format (usually
denoted by a .mol or .sdf file extension).

gotostruct
nextstruct

Used for multi-structure files, files that contain a sequence of
structures rather than a single structure. ‘gotostruct’ in-
structs to read the structure at the position structnum in the
file. ‘nextstruct’ reads the next available structure in the file
starting from the last accessed position (or the first structure
if the file has been accessed for the first time). The default is
to read the current structure (the first structure or the last ac-
cessed structure). Note that Impact maintains only a record of
the position of the current open file, so that if file1 and then
file2 are accessed in sequence, the position information of file1
is lost.

cmae Read partial charges for all atoms from Maestro files. These
override charges that OPLS-AA would assign.

Impact 4.0 Command Reference Manual 25

Chapter 2: Setup System

fos Use formal charges from Maestro or SD files for single atoms.
This allows you to choose specific oxidation states for ions, e.g.,
Fe3+ instead of OPLS-AA’s default for Iron, Fe2+.

fobo Use all formal charges and bond orders from the input Maestro
or SD file, overriding the assignments that the OPLS-AA typer
would make.

notestff The default behavior of build primary auto is to check the
Lewis structure of the species and skip further processing of
structures for which no valid Lewis structure could be gener-
ated. The ‘notestff’ keyword allows processing of the species
regardless of the validity of its Lewis structure. Accepting input
structures that are not correct Lewis structures may be nec-
essary in the QM region of mixed QM/MM calculations (see
Section 2.3.10 [Subtask QMregion], page 60), where the Jaguar
program will determine the correct structure. For additional in-
formation regarding Lewis structure checking see the ‘lewis’ or
‘ifo’ keywords.
CAUTION: we strongly discourage use of the ‘notestff’ key-
word for structures other than those that contain the QM region
of QSite jobs, unless you are sure that the connectivity, bond
orders, and formal charges of your input structure are correct.
Forcing the program to process incorrect structures can lead to
serious errors in results.
The keyword is applied to all species that undergo a build
types command until the next build primary auto command
where the default behavior is reverted to unless another
‘notestff’ command is given.

2.2.1.6 Primary Ions
• build primary ions name spec -

type [protein | other | DNA | DNAB | DNAA | DNAZ | RNA] -

resname numbers [xyz x val y val z val]+ end

Appends a total number of numbers “ions” (any entity, really) to
spec. The “ions” consist of the single residue resname, which should
be either present in the residue data base or have been previously
constructed with ‘build newresidue’ (see Section 2.2.1.8 [Newresidue
(build)], page 27). These “ions” will not be part of any chain, i.e., they
are not covalently bonded to any of the atoms specified when the pri-
mary structure for spec was built (which should, of course, occur before
‘build primary ions’ is invoked). For single atom ions, such as Na+,
Cl-, Zn2+, etc, the coordinates can be read in here (recommended in
fact) through the optional xyz keyword. The coordinates of ions can
also be read in through subtask ‘Read xyz’ Section 2.2.4 [Read (cre-

26 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

ate)], page 33. It should be noted that Impact will not read in metal
ion coordinates directly from PDB files.

2.2.1.7 Crosslink
This option inserts connectivity information due to the inclusion of crosslinks
into the appropriate structural arrays. For cys crosslinks, it is recommended
that the residue cyx be used in ‘build primary’.

• build crosslink automatic

Caution: this must be used only if crosslink was specified in the ‘build
primary’ line for at least one of the species and it should always be af-
ter all the species have been built. It uses structural information gath-
ered by ‘build primary ... crosslink’ to make new bonds between
crosslinked atoms (see Section 2.2.1.1 [Primary (build)], page 19).
• build crosslink name spec -

[resnumber resn atname atna -

resnumber resn atname atna]+

This option should be used to force crosslinks between residues. Cau-
tion: ‘build primary crosslink’ should not be used in this case.

2.2.1.8 Newresidue
• build newresidue [spec file fname]+

build newresidue drug1 file drug1.pdb

build newresidue drug2 file drug2

Adds a residue to the data base. Two options can be used, a PDB
formatted file with a .pdb file name extension (the program will auto-
matically build all internal coordinates, and atom types), or a template
file with a name other than one for a PDB file name.
Template file: the file fname should contain connectivity information
and internal coordinates for the species.5 Default internal cartesian co-
ordinate must be defined by using equilibrium bond lengths and angles.
The information is read from a formatted file. Please see Appendix A
for information pertinent to building a residue file. When using a user
defined residue, ‘build newresidue’ must be called before using the
residue in ‘build primary’.
PDB file: this option builds the template from the PDB file. It uses the
first part of the file name as the residue name, for example, if the PDB
file has a name ‘drug1.pdb’, the template file will be named ‘drug1’.
The program will assign the OPLS-AA atom types (AMBER atom types
are not supported) for each atom in the molecule, and find bonds, an-
gles, proper torsions and improper torsions. All the information will

5 There is a small limit, typically 10, in the number of new residues that the program can
handle.

Impact 4.0 Command Reference Manual 27

Chapter 2: Setup System

be organized in the template file using the same format as in a protein
or DNA residue. As of this writing, the molecule cannot contain more
than 1000 atoms, but this limit will be relaxed in future versions.

2.2.1.9 Secondary

‘Build secondary’ is used to build secondary structure into the molecule by
changing the value of its torsion angles to the ideal values for that secondary
structure. Non-standard secondary structure may also be incorporated with
this option. The secondary structure of each species must be built separately.

• build secondary name spec -

[calpha | helix | lhelix | sheet | random [seed num] | -

user phi phi psi psi | -

turn type [i | ip | ii | iip] | -

sidechain [resnumber resn] -

chi ichi [torsion chi | seed num | nil]] -

fresidue first lresidue last

Builds the secondary structure of a protein.6 The parameters first and
last specify the numbers of the first and last, respectively, residues that
are involved in the secondary structure in question. The keywords that
specify the secondary structure have the following meanings:

random Specifies a random coil structure (or lack of). The torsional
angles will be taken from a random number generator that
is initialized with the parameter to seed (the default value
is 111).

calpha Uses just the Cα coordinates to obtain other backbone co-
ordinates.

helix Specifies a α-helical structure. The angles ψ and φ are both
set to −60.

lhelix Specifies a left-handed helix. The angles ψ and φ are both
set to 60.

sheet Specifies a β-sheet. The angle ψ is set to 135 and φ to 220.

user The angles ψ and φ are set to the specified values.

turn Changes ψ and φ according to the type of turn. The types
of turns are shown below.

i βi turn, where φ = −60.0 and ψ = −30.0
for first residue, and
φ = −90.0 and ψ = 0.0 for second residue.

6 Normally one obtains the secondary structure from a PDB file, but this option allows the
user to change it if so desired.

28 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

ip β′i turn, where
φ = 60.0 and ψ = 30.0 for first residue, and
φ = 90.0 and ψ = 0.0 for second residue.

ii βii turn where φ = −60.0 and ψ = 120.0
for first residue, and φ = 80.0 and ψ = 0.0 for
the second residue.

iip β′ii turn where φ = 60.0 and
ψ = −120.0 for first residue, and φ = −80.0
and ψ = 0.0 for second residue.

sidechain
The parameter chi (selected at random if not specified, in
which case seed has the same significance as for random)
gives the new value of the specified torsion angle. The pa-
rameter ichi selects which side chain torsion to modify.

• build secondary name spec [ADNA | BDNA | ZDNA]

Builds the secondary structure of a DNA molecule (this must be spec-
ified after ‘build primary’). Of course, spec should have been built
with the corresponding primary structure. Impact will take the strands
that were specified and put them into their double helical form by per-
forming Eulerian angle transformations on the strands built by Impact.
For B- and A-DNA, the Euler angles used are based on the relationship
the strands have in the S. Arnott paper whereas in Z-DNA it is based
on the relationship the strands have in the A. Rich paper.

2.2.1.10 Solvent
Impact distinguishes between species that are used primarily as solvent and
those that are used as solute. This option should be used in the place of
‘build primary’ to specify the nature of the solvent.7 A typical although
simplified use is given in the following example:

CREATE

build primary name dipep type protein ala gly end

build solvent name agua type spc nmol 216 h2o

QUIT

If both solvent and solute are present, then Impact will automatically remove
those solvent molecules that overlap the solute. The removal algorithm is
based on safe default settings which however may cause the removal of too
many solvent molecules, giving a total system density that is too low. These
settings can be modified using the mixture subtask of the setmodel task
(see Section 2.3.6 [Mixture (setmodel)], page 54).

• build solvent name spec type [spc | tips | tip4p] nmol num h2o

7 There can be only one solvent species in Impact.

Impact 4.0 Command Reference Manual 29

Chapter 2: Setup System

• build solvent name spec type other -

nmol num resname [read file pdbfname]

Builds the structural arrays for the solvent species spec. The first form is
used most often since it creates a solvent composed of ‘water’ molecules. At
present it can handle SPC, TIP3P and TIP4P water models. If type is not
spc, tips or tip4p the user should specify a valid residue name resname,
i.e., one that either exists in the database or has been specified in a previous
call to ‘build newresidue’. The parameter to nmol gives the initial number
of molecules (which might be different from the final value (see Section 2.3.6
[Mixture (setmodel)], page 54), unless a PDB file name is given, in which
case the initial number of molecules will be the larger of num and the number
of molecules in pdbfname.

2.2.1.11 Types
• build types name spec [pparam] [lewis int|ifo int] -

[patype int] [plewis int]

Assigns OPLS-AA atom types to species spec.
Most, but not all, of the Impact tasks require the ability to calculate the en-
ergy of the system using a force field. A force field is based on the assignment
of an atom type to each atom. When a species is built using type ‘other’,
‘protein’ or the nucleic acid types, or when using the ‘build solvent’ com-
mand, the atom type information is contained in the residue template files.
Impact also provides a facility to automatically assign OPLS-AA atom types
to a molecular system and to automatically recognize which bonds, bond an-
gles and torsions are to be included in the energy calculation. This facility
is implicitly invoked when building a species using type ‘ligand’ in order to
generate the corresponding template file. A species built using type ‘auto’,
however, requires the explicit invocation of the ‘build types’ command in
order to assign valid OPLS-AA atom types.
The ‘build types’ command can be invoked for any species (with the ex-
ception of solvent species) not just for species of type ‘auto’. For example
the invocation of the ‘build types’ for a species of type ‘protein’ will as-
sign OPLS-AA atom types to the protein atoms overriding the atom type
information contained in the built-in aminoacid template files. It is actu-
ally recommended to do so to ensure atom type consistency between, say,
the same protein built using either type ‘protein’ and type ‘auto’ followed
by the ‘build types’ command. Although every effort is made to keep the
built-in residue template files synchronized with OPLS-AA implementation
revisions, it is possible that slight differences may arise at times between
the atom types assignments in the residue template files and the atom types
assignments produced by the ‘build types’ command.
The automatic atomtyping procedure is time consuming especially for large
molecules. For time-critical applications involving the energetic analysis of

30 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

a large number of standard protein structures, for example, consider build-
ing the proteins using type ‘protein’, which does not require automatic
atomtyping. For species built stepwise from individual molecules invoke the
‘build types’ command only when the species is completed rather than
after each build command. For example the sequence of commands

CREATE

build primary type auto name complex mole receptor -

read maestro file receptor.mae

build types name complex

build primary type auto name complex mole ligand -

read maestro file ligand.mae

build types name complex

QUIT

and
CREATE

build primary type auto name complex mole receptor -

read maestro file receptor.mae

build primary type auto name complex mole ligand -

read maestro file ligand.mae

build types name complex

QUIT

will generate identical molecular systems with identical OPLS-AA atom types
assignment, but the latter will execute in less time.
The Lewis structures of all species to be typed are, by default, checked prior
to the assignment of atomtypes and force field parameters. If the species is
found to have a valid Lewis structure, the species is passed to the automatic
atomtyping routine. If the Lewis structure is found to be invalid, the Lewis
structure refinement process is initiated and an attempt is made to generate
a valid Lewis structure. If no valid Lewis structure is generated, further
processing on the species is halted unless the ‘notestff’ flag is employed in
the ‘build primary auto’ command. The behavior of the Lewis structure
checking/refinement process is controlled via the ‘lewis’ or ‘ifo’ arguments
as shown below.
• ‘lewis 1’ - Use formal charges for isolated atoms from the input struc-

ture. Equivalent to setting the ‘fos’ flag for a ‘build primary auto’
command.

• ‘lewis 2’ - Use formal charges and bond orders from the input structure.
No Lewis structure check is performed. Equivalent to setting the ‘fobo’
flag for a ‘build primary auto’ command.

• ‘lewis 5’ - Default behavior. First test if input structure is valid, if not
then attempt to generate a valid Lewis structure.

To print the atom types and force field parameters assigned, add the pparam
flag to the ‘build types’ command. For more verbose printing from the
automatic atomtyping process, use the patype flag with increasing verbiage
in going from values of 1 to 6. For more verbose printing from the Lewis

Impact 4.0 Command Reference Manual 31

Chapter 2: Setup System

structure checking/refinement process, use the plewis flag which will output
increasing verbosity in going from values of 1 to 6.

2.2.2 Subtask Delete

To build acylated ligands it is necessary to delete the H atom on the residue
connected to the ligand. In addition the ligand should be represented as it
appears in the acylated form. For example, to delete the H atom of residue
number 70, with the H atom attached to heavy atom name OG and the H
atom name is HG, the following syntax is used;

delete name prot mole pro resnumber 70 atname OG hatname HG

This line appears in the CREATE section after the system has been specified
with build.

2.2.3 Subtask Print
Writes information to the main output file in human-readable form about
the structural arrays of a given species.

• print tree name spec

Prints out the tree structure for each residue as natom(), join(i),
igraph(i), isymbl(i), itree(i), bond(i), angl(i), tor(i), charg(i), and iro-
tat(i). The tree has the following structure:

natom(i) The atom number of atom i.

join(i) The atom to which atom i is bonded in the tree structure,
viewed back down the chain toward the first atom.

igraph(i) Graph name of atom i, atom name unique to residue.

isymbl(i) Atom type of atom i.

itree(i) The tree type of atom i is one of the following.
M ⇒ Main
S ⇒ Side chain
E ⇒ End
B ⇒ Branch
3 ⇒ Three way branch

bond(i) Bond Length between i and join(i).

angl(i) Angle Between i-j-k where
j = join(i)

k = join(j)

torsion(i) Torsion angle between i-j-k-l where
j = join(i)

k = join(j)

32 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

l = join(k)

charg(i) Charge on atom i.
irotat(i) Last atom affected by a rotation of atom i about the bond

to join(i).
• print structure name spec [bond | angle | torsion | excluded]

Prints out structural arrays, i.e., a list of all bonded pairs, angle triplets
or dihedral quartets. It can also print the list of excluded atoms for the
given species.
• print ic name spec [bond | angle | torsion]

Prints structural arrays and corresponding internal coordinate value.
All internal coordinates of species spec will be printed as specified by
the keyword. Internal coordinates due to crosslinks are at the end of
the internal coordinate array.
• print coordinates name spec [impact | brookhaven | nil] -

file fname

Prints out coordinates in impact format or standard Protein Data Bank
(PDB) format. The default is the standard format, for which the key-
word is brookhaven after the former home of the PDB. The impact
format is very similar to the standard PDB format except for the nomen-
clature used for hydrogens (see Section 2.2.4.3 [Coordinates (read)],
page 35).

2.2.4 Subtask Read

This subtask reads in additional information needed to define the structure
of molecules more precisely. This information includes new coordinates, or
residue topology information.

2.2.4.1 Xyz
• read xyz name spec resnumber resn atomname atna -

x real y real z real

Changes the cartesian coordinates (x, y, z) of the specified atom to the
input values. This option is mainly used to change a few coordinate
values, as otherwise it is more convenient to read the coordinates from
a file (see Section 2.2.4.3 [Coordinates (read)], page 35).

2.2.4.2 Internal
This option allows the user to change the internal coordinates of a molecule
after it has been built (see Section 2.2.1.1 [Primary (build)], page 19). Care
must be taken, though, to specify the atoms in the correct order (this is a
limitation in Impact that might not be removed in the near future). The
best way to ensure the ordering is to issue a ‘print tree’ command in a
previous run and to use the structural information obtained from the second
column in the display of each residue. Let us clarify this with an example.
If a system is created with the commands

Impact 4.0 Command Reference Manual 33

Chapter 2: Setup System

CREATE

build primary name pep1 type protein ala gly ala end

print tree name pep1

QUIT

then the (main) output file will contain the following fragment, showing the
structure of the first residue, ala:

Residue 1 = ALA residue total = 1

Bond array begins with 1 1st atom in residue = 1

1 0 N N M 0.000000 0.000000 0.000000 -0.463 27

2 1 HN H E 1.010000 0.000000 0.000000 0.252 2

3 1 CA CT M 1.449000 0.000000 0.000000 0.035 27

4 3 HA HC E 1.090000 109.500000 0.000000 0.048 4

5 3 CB CT 3 1.525000 111.100000 0.000000 -0.098 8

6 5 HB1 HC E 1.090000 109.500000 60.000000 0.038 6

7 5 HB2 HC E 1.090000 109.500000 180.000000 0.038 7

8 5 HB3 HC E 1.090000 109.500000 300.000000 0.038 8

9 3 C C M 1.522000 111.100000 0.000000 0.616 27

10 9 O O E 1.229000 120.500000 0.000000 -0.504 10

Given this structure the following command will fail:
CREATE

read internal name pep1 bond -

resnumber 1 atomname N resnumber 1 atomname CA bond 1.23

QUIT

but this one will succeed:
CREATE

read internal name pep1 bond -

resnumber 1 atomname CA resnumber 1 atomname N bond 1.23

QUIT

The first command fails because the second column of the row that corre-
sponds to atom N has a zero, whereas the second column of atom CA has a
one (it is bonded to N) and the second command succeeds.
Caveat: ‘read internal’ cannot create new internal coordinates, i.e., a new
structure. It can only modify the values of preexisting internal coordinates
that are defined in the residue databases (or constructed when two residues
are joined together).

• read internal name spec bond -

resnumber resn atomname atna -

resnumber resn atomname atna -

bond value

Changes the internal bond length between the two specified atoms.
• read internal name spec angle -

resnumber resn atomname atna -

resnumber resn atomname atna -

34 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

resnumber resn atomname atna -

angle value

Changes the internal angle between the three specified atoms.
• read internal name spec torsion -

resnumber resn atomname atna -

resnumber resn atomname atna -

resnumber resn atomname atna -

resnumber resn atomname atna -

torsion value

Changes the internal dihedral angle between the four specified atoms.

2.2.4.3 Coordinates
Reads in coordinates from a standard-format PDB file or an Impact gen-
erated coordinate file, changing the value of the internal coordinates that
match those read in. If hydrogens (or side chains) are not included in the
file, their internal coordinates will be automatically adjusted to reflect the
new reference frame wherever possible. The default format is standard PDB
file format.

• read coordinates [brookhaven | impact] [chain] -

name spec file fname

The keyword chain forces reading of only one chain.
The buried or bound waters in PDB files will be read in as default.
However, the residue names for these waters must be HOH or SPC. If
they happen to be UNK or something else, user needs to convert them to
be HOH first; otherwise, Impact will just skip them.
The only difference between impact and brookhaven formats is that in
the latter the atom name is a four letter name (where the first 2 spaces
are the atomic symbol and the second two are unique atom codes). In
the case of a one letter atomic symbol, a leading blank is added. Thus
the α carbon would be called _CA_. In impact the addition of hydrogens
requires the use of all four positions in order to uniquely define the names
of all the atoms, we therefore removed all the leading blanks. Thus a δ
carbon, and its hydrogens would be called CD1_ and CD2_ and HD11 in
impact, as opposed to _CD1 _CD2 and 1HD1 in brookhaven.
It is important to review a PDB file before reading it in directly. Multi-
ple chains contain TER cards after each chain, and these must be deleted
because this option stops reading when TER is reached. Prior to con-
tinuing with calculations, for insertion and deletion codes, print out a
PDB file after reading it in to see the new numbering scheme. Also,
please analyze PDB files for unknown or nonstandard residues.

2.2.4.4 Bound Waters

As mentioned in the above read coordinates subsection, the bound waters
in PDB files will be read in as default. However, the residue names for these
waters must be HOH or SPC.

Impact 4.0 Command Reference Manual 35

Chapter 2: Setup System

The bound waters with residue labels HOH or SPC in PDB files generally
require the H atom coordinates to be defined. Impact simply defines the H
atom coordinates for each water O atom by placing one H atom close to a
neighboring atom (within a cutoff) and by placing the other H atom so as
to maximize its distance from other atoms (at the fixed HOH angle). At
present, Impact always regenerates the H-atom coordintes for HOH residues
even if they are given in the original file.
If the user does not want to read in bound waters in a PDB file, he/she
can turn this option off by the keyword noboundwater no matter what the
residue names are.

• read coordinates brookhaven name 1stp file 1stp.pdb noboundwater

36 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

2.3 Task Setmodel
The object of this task is to process energy, structural and simulation pa-
rameters required for the following simulations:
• pure solute;
• pure solvent;
• mixed solute-solvent;
• crystal.

This task must be completed before calls to minimize, dynamics, or subtasks
of analysis requiring energy evaluations. The use of this task is shown in
Section C.2.5 [Protein-water MD (example)], page 253, Section C.2.4 [Pro-
tein solvate (example)], page 250, and Section C.2.3 [Protein size (example)],
page 246.

2.3.1 Subtask Energy

Read in information needed to calculate force and energy in MM, MD
and MC simulations, including boundary conditions, potential cutoff, con-
straints, and screening of Coulomb interactions. The following options are
allowed in subtask energy.

2.3.1.1 Periodic
Sets up periodic boundary conditions for species spec based on the supplied
bx, by, bz box dimensions, which should be in Å. Instead of specifying a
species by name you can use the keyword all.

• energy periodic [name spec | all] [bx val by val bz val]

2.3.1.2 Molcutoff/Rescutoff
• energy [molcutoff | rescutoff] [byatom | bycm] [all | none | name spec]

Specifies that a molecular (molcutoff) or residue-based (rescutoff) group
cutoff scheme should be used for species spec. The byatom and bycm options
control the criteria according to which two atom groups (two molecules or
two residues) are considered neighbors. Using byatom mode two atom groups
are considered neighbors if any two atoms belonging to different groups are
closer than the cutoff distance. Using bycm mode two atom groups are
considered neighbors if the corresponding centers of mass are closer than the
cutoff distance. If byatom is specified for species spec1 and bycm is specified
for spec2 then an atom group of spec1 is considered neighbor of an atom
group of spec2 if the distance between any atom of the first atom group and
the center of mass of the second group is smaller than the cutoff distance.
The default is byatom for the residue-based cutoff scheme (rescutoff) and
bycm for the molecule-based cutoff scheme (molcutoff). The all option can
be used to apply to all species the specified group cutoff scheme. If instead
none is given, an atom-based cutoff scheme is applied to all species. If a

Impact 4.0 Command Reference Manual 37

Chapter 2: Setup System

group cutoff scheme is not specified for a species then an atom-based cutoff
scheme is assumed.
The term group cutoff implies that, if two atom groups (molecules or
residues) are considered neighbors, every atom in the first group are con-
sidered neighbors to every atom in the other group regardless of their inter-
atomic distance. (In the non-bonded energy calculation the actual distance
between each pair of neighboring atoms is used.) For simulations involv-
ing water, for example, molecular cutoffs should always be used in order to
avoid splitting dipoles in the electrostatic energy calculation. With respect
to molecular-based cutoffs a molecule is defined as a covalently linked set
of atoms. A residue can not span more than one molecule so, for example,
each water molecule is a separate residue. For proteins a residue-based cut-
off scheme should be preferred over an atom-based cutoff scheme. In the
OPLS force field each residue has a zero or integral total charge (a charge
group) therefore a residue-based cutoff scheme avoids some of the major
dipole splitting problems inherent in an atom-based cutoff scheme.
For sample input files, see Section C.2.4 [Protein solvate (example)], page 250
and Section C.2.5 [Protein-water MD (example)], page 253.

2.3.1.3 Constraints
Instruct Impact to read in bonds or distances that should be constrained
during molecular dynamics using the SHAKE method. There are two ways of
specifying constraints:

• energy constraints read file fname

will read the constraints from the given file (see below for a description of
the format of the constraint file). Alternatively,

• energy constraints (bonds [water] | lonepairs)

constrains all bonds to their equilibrium values based on the bond parameters
read in by setmodel read. Therefore, parameters must be read first for
this option to work. Note that all species will be thus constrained. If the
optional keyword water is present only the bond lengths of water molecules
are constrained. The keyword lonepairs is a little more complicated. It
finds all atoms whose names have the first two letters LP and adds the bonds
and angles associated with them to the SHAKE constraints. Lone pairs move
too much due to their low atomic weight and therefore this option should
be used when the force field is AMBER86 and cysteines and methionines,
which contain LP’s on the sulfur, are present. The added constraints only
apply to bonds made directly to the LP’s (such as SG–LP) and the angles
involving two LP’s (such as LP–SG–LP). The command

• energy constraints angles water

constrains the H–H distance of water molecules to the value obtained from
the equilibrium bond length and angle. The commands

energy constraints bonds water

energy constraints angles water

allow to perform MD simulations with rigid water models (SPC, TIP4P, and
TIP3P) without constraining the other molecules in the system, without

38 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

having to explicitly define a constraints file (see above) or in cases when a
constraints file can not be used, such as when water molecules are part of a
type auto species (see see Section 2.2.1.5 [Auto (primary type)], page 24).
The commands

energy constraints bonds

energy constraints angles water

rigidify water molecules and constrain the bond lengths of all the other
molecules in the system.
The maximum allowed number of iterations in the SHAKE/RATTLE algorithms
can be controlled with the keyword maxiter (default: 1000)

• energy constraints maxiter num

2.3.1.4 Constraint file format

1. The file that contains the constrained distances is free format but the
following lines are read in:
• Number of constraints for a species.
• Pairs of atoms constrained and constrained distance value.

Caution: it is expected that constraints for all species are in one
file and these are added to the list for the species, e.g.,

energy constraints bond

can be used first followed by
energy constraints read file fname

where fname contains only the list of distances needed to constrain
angles.

2. Sample constraint files
• for H2O constraining OH distances to 1.0 Å and HH distance to

1.633 Å:
3

1 2 1.0

1 3 1.633

2 3 1.0

• If species 1 is unconstrained and species 2 is constrained water:
0

3

1 2 1.0

1 3 1.633

2 3 1.0

Caution: If the option ‘energy constraints bond’ is chosen and a con-
straint file is not read, all bonds in the molecule are constrained to the
equilibrium values corresponding to each bond type as listed in the input
energy parameter file. This is done using the SHAKE algorithm.

(energy), Energy (setmodel)

Impact 4.0 Command Reference Manual 39

Chapter 2: Setup System

2.3.1.5 Torsional Restraints

The following commands are useful to restrain torsional dihedral angles of
the system near the current values or supplied values. These restraints are
implemented as flat-bottom harmonic penalty potentials:

U(φ) =
k

2
[φ− (φ0 + ∆)]2 if φ > φ0 + ∆

U(φ) =
k

2
[φ− (φ0 −∆)]2 if φ < φ0 −∆

and 0 otherwise, where φ is the dihedral angle, φ0 is the reference angle, ∆
is the half-width of the flat-bottom region, and k is the force constant.
The command

• energy restrain torsions all forcec value [range value]

restrains all dihedral angles associated with a torsional potential energy term.
The value of forcec is the force constant in kcal/mol/degrees2 , the range
parameter sets the half-width of the flat-bottom harmonic potentials in de-
grees. The range parameter can be omitted in which case it is set to zero
(pure harmonic restraint).
To restrain specific dihedrals for a particular species use the command:

• energy restrain torsions name name read file file

The parameters of the restraining potential are read the specified file. Each
line in this file represents a dihedral angle to be restrained. The format of
each line is:

forcec phi0 i j k l range

where forcec and range have the same meaning as above, phi0 is the center
of restraining potential, and i, j, k, and l, are the internal atom indexes
of the atoms specifying the dihedral angle. Both types of commands can
be given, in which case the restrains specified by the second command are
added to the ones created by the first.
Torsional restrain parameters are reported in the output file with a verbose
level of 3 or higher (see Section 1.5 [Input Files], page 5). The energy penalty
of each individual restrained dihedral is reported in the output file at the
end of a minimization task.

2.3.1.6 Parm
Read in parameters such as nonbonded cutoffs and nonbonded list update
frequency, which are used by several energy manipulation tasks such as
dynamics, minimize, montecarlo, tormap, and potfield.

• energy parm [cutoff | hbcutoff] value

Sets a given cutoff distance to the length specified in value, which should be
in Å. The keyword cutoff selects the nonbonded cutoff, which is used for
both the Lennard-Jones and the electrostatic interactions (unless the Fast
Multipole Method is used). This is a sharp cutoff. Hbcutoff selects the
cutoff for hydrogen-bond interactions, which defaults to 3.5 Å.

40 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

• energy parm scr14 value

Sets the 1–4 nonbonded screening constant (2.0 by default).
• energy parm [dielectric value [distance | nodistance]]

Sets the value of the dielectric constant (1.0 by default). These options allow
the choice of a distance-dependent or a constant dielectric function. One of
these must be specified or the program will stop.

• energy parm listupdate num

Sets the number of steps between updates to the nonbonded (Verlet) list. If
listupdate is not specified, it defaults to 10.

• energy parm outcutoff value outlistupdate num

Sets the cutoff radius and number of steps between updates for the outer
neighbor list. When these optional parameters are specified an outer neigh-
bor list is used. When the main non-bonded neighbor list is updated only
the outer neighbor list is scanned rather than the entire system. If the outer
neighbor list is updated more infrequently than the non-bonded neighbor list,
using the outer neighbor list leads to a significant reduction of the time re-
quired to update the non-bonded neighbor list, particularly for large systems
(>4,000 atoms). See Section C.2.5 [Protein-water MD (example)], page 253
for an example of usage.

• energy parm print num

Sets the frequencies at which the energy terms are printed to the output.
For example input files see Section C.3.6 [Area vs. Solv Energy (example)],
page 294 and Section C.3.4 [MDanalysis (example)], page 275.

2.3.2 Subtask Read

This command is used to read in energy parameters from a separate file or
from the main input file.

• read parm [noprint | minprint | allprint | nil] file fname

The keyword noprint disables printing of the parameters as they are read;
minprint prints a complete list of the system’s parameters, and allprint
prints an extremely verbose list. In this option, parameters are printed for
every bond, angle, torsion, etc. in the file, not just for those parameters
required for the system under consideration. The default is minprint.

• read [char | epsi | hbsc] [file fname]

Forces reading of charges (char), Lennard-Jones ε (epsi), or hydrogen-bond
(hbsc) parameters. These last three options can be followed by a file spec-
ification or, in the same input file, a sequence of lines terminated by the
keyword quit by itself. In any case these lines must match the following
pattern:

residue name spec resnumber num atomname atom_name new_parameter

The metavariable new parameter must be one of the following:
newcharge value (for char)
newepsilon value (for epsi)
scale value (for hbsc)

Impact 4.0 Command Reference Manual 41

Chapter 2: Setup System

2.3.3 Subtask Print
Write information in user readable form to the main output file or another
file specified in the command line.

• print pdb [species species_number] [impact | brookhaven] -

file fname

• print solvent file fname

The keyword species lets the user specify which species’ coordinates should
be printed out. Warning: species must be followed by a number (from 1
up), not the name of the species.

2.3.4 Subtask Setpotential

Read in information about the chosen potential function. Each option at
the outermost level (as mmechanics) should be on its own line.

2.3.4.1 Mmechanics

Sets up a standard molecular mechanics potential function taking the fol-
lowing options.

• mmechanics [all | name spec | nil] -

[force | noforce | nil] [noecons] -

[tail | notail | nil] [nobond] [noangle] [notors] [no14] -

[nohb] [novdw] [ewald [kmax km] [alpha alfa]] -

[fmm level level maxpole poles [smoothing]]

[consolv [pbf | sgb | agbnp | nil] consolv_options]

all Use of all flags that the options nobond, noangle and notors
refer to all species, otherwise use species spec.

force
noforce Force/noforce determine whether forces should be calculated.

Forces are required for minimization and dynamics. (This is
the default.) Currently this option is ignored if the Fast Multi-
pole Method is used.

noecons Determines whether NOE (Nuclear Overhauser Effect) con-
straints will be added to the potential (the default is no NOE
constraints).

tail
notail Determines whether long-range corrections to the van der Waals

energies due to cutoffs are made. Tail is needed for constant
pressure simulations (the default is notail).

nobond Flag to turn off bond stretching term.

noangle Flag to turn off valence angle bending term.

notors Flag to turn off torsional twisting term.

no14 Flag to turn off both 1-4 interaction term (nonb14 and noel14).

42 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

noel Flag to turn off electrostatic term.

nohb Flag to turn off hydrogen bond term.

novdw Flag to turn off van der Waals (non-bonded) interaction term.

ewald Makes Impact use the Ewald summation method to handle the
long-range electrostatic interactions. It only works if all species
have periodic boundary conditions. To describe the parameters
following the keywords kmax and alpha it is convenient to recall
the definition of the Ewald potential (with ‘conducting boundary
conditions’):

Φ(x) =
∑
n

erfc(α‖x + Ln‖)
‖x + Ln‖

+
∑
k6=0

4π
L3‖k‖2 exp

(
−‖k‖

2

4α2 + ik · x
)
− π

L3α2 .

This formula represents a solution to the Poisson equation for
a unit charge under periodic boundary conditions (there is a
negative background that renders the system neutral, as other-
wise it can be shown that there is no solution) as a sum of two
infinite series, both of which converge exponentially. The first,
so-called ‘real-space sum’, converges faster the larger the value
of α is. Conversely, the second sum converges faster the smaller
this value. Impact restricts the first sum to the original copy,
that is, it only considers the terms with n = 0. The second
sum, the ‘reciprocal-space sum’, is restricted to those values of
k whose components are, in magnitude, less than or equal to the
parameter specified by the keyword kmax (default: 5). The α
parameter has by default the value 5.5/L, where L is the lin-
ear dimension of the box (which must be cubic). The user can
change this value, however, with the alpha keyword. Note, how-
ever, that changing this parameter might require changing the
maximum number of reciprocal-space vectors also. A good refer-
ence for the Ewald summation method is the book by Allen and
Tildesley, Computer Simulation of Liquids, Oxford University
Press, 1991. For the mathematically inclined we recommend
also the article: de Leeuw, Perram and Smith, Simulation of
electrostatic systems in periodic boundary conditions. I. Lattice
sums and dielectric constants, Proc. R. Soc. London, A373,
27–56 (1980).

fmm Selects the Fast Multipole Method (FMM) for the calculation
of the electrostatic interactions. The number following level
should be the desired number of levels in the hierarchical tree.
Since the nodes of the tree correspond to subsequent subdivi-
sions of the simulation box into halves along each direction, if

Impact 4.0 Command Reference Manual 43

Chapter 2: Setup System

level l is selected, the number of boxes at the lowest level will
be 8l and the linear dimension of each one box at that level will
be L/2l with L being the linear dimension of the simulation box
(which must be cubic).

The number following maxpole is the maximum number of mul-
tipole moments that will be used to approximate the potential
and field produced by ‘far’ clusters. Currently a minimum of four
(4) and a maximum of twenty (20) multipoles are allowed. The
keyword smoothing determines whether a sharp or smooth cut-
off are used to separate the direct forces into near and far com-
ponents. It is only relevant when using the Reversible RESPA
integrators (see Section 3.2.2 [Dynamics Subtask Run], page 81)
with more than two stages. If periodic boundary conditions are
in effect, the potential that gets computed coincides with the
Ewald potential (see above), but the algorithm is completely
different. One important restriction when using the FMM with
periodic boundary conditions is that the system must be elec-
trically neutral, i.e., the sum of all point charges must be zero.
The main reference for the FMM is Greengard’s thesis, The
Rapid Evaluation of Potential Fields in Particle Systems, The
MIT Press, Cambridge, 1988. For an example, see Section C.4.1
[FMM (example)], page 305.

Because FMM calculations scale linearly with the total num-
ber of atoms, they can provide a significant speed advantage in
calculating electrostatic interactions for large systems when it
is not desirable to use cutoffs. Systems large enough for FMM
to be advantageous may be large macromolecules or complexes
of them, or smaller molecules with a large number of explicit
solvent molecules. If it is possible to impose periodic bound-
ary conditions, then the Ewald method (which requires such
boundary conditions) tends to be faster than FMM for systems
containing more than about 20000 atoms.

PLEASE NOTE: The Fast Multipole Method cannot currently
be used with the truncated Newton minimization algorithm
(tnewton) (see Section 3.1.3 [Subtask Tnewton], page 74), or
with SGB continuum solvation (see below). It is available with
PBF continuum solvation (see below), but the FMM is not ap-
plied to the continuum solvent itself. Unless the solute is quite
large, therefore, it may not be advantageous to use FMM with
continuum solvent.

consolv [sgb]
• mmechanics consolv sgb [cutoff val] -

[npsolv] [debug val]

44 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

SGB, the default option for consolv is a surface area based ver-
sion of the Generalized Born model, which can be proved to be
a well-defined approximation to the boundary element formula-
tion of the Poisson-Boltzmann (PB) equation1. The relationship
of the surface area methodology to the volume-integration based
approach of the original GB model2 can be found in Ghosh et
al.’s paper. With empirical corrections, SGB produces signifi-
cant improvements in accuracy, as compared to the uncorrected
GB model.
PLEASE NOTE: This solvation method cannot currently be
used with the Fast Multipole Method FMM (see above).

cutoff The cutoff parameter specifies how far any atom
must move from the coordinates used in the previous
calculation before a new Reaction Field calculation
is performed. The default value is 0.1 Å. If all atomic
coordinates have moved less than this cutoff, then
the previous calculated energy and forces are used
for that step in the minimization. A relatively large
value of cutoff can significantly reduce the required
computational time at the expense of some loss in
accuracy.

npsolv The npsolv keyword will turn on the properly
parametrized dielectric radii and nonpolar param-
eters for SGB continuum solvent simulations. The
parametrization was done by fitting the SGB cal-
culated free energy coupled with a novel nonpolar
function3 against small molecule experimental sol-
vation free energies.

debug Setting debug to a nonzero value causes diagnostic
messages and files to be printed for each calculation.

The consolv sgb parameter files are in the directories
$SCHRODINGER/impact-v4.0/data/opls

$SCHRODINGER/impact-v4.0/data/opls2000

and all start with sgb. The files should not need to be modified
by the user on an ongoing basis; most useful parameters can be
changed via the sgbp input file keyword (see Section 2.3.5 [Sgbp
(setmodel)], page 53).
If the SGB model is activated, then the following line should
appear in the output:

1 A. Ghosh, C. S. Rapp, and R. A. Friesner, J. Phys. Chem. B, 102, 10983, (1998)
2 Still, et al. J. Am. Chem. Soc., 112, 6127, 1990
3 E. Gallicchio, L. Y. Zhang, and R. M. Levy, J. Comput. Chem, 23, 517-529 (2002)

Impact 4.0 Command Reference Manual 45

Chapter 2: Setup System

%IMPACT-I (mmstd): Using Surface Generalized Born Model

In the energy-decomposition printout provided by Impact dur-
ing the course of a minimization, the continuum-solvent energy
is provided under the heading ‘RxnFld(Sgb)’. These energies
include the interactions between the atomic-point charges and
the induced charges at the solute/solvent interface.
Examples:

• mmechanics consolv sgb cutoff 0.1

• mmechanics consolv sgb nonpolar 1

consolv pbf
• mmechanics consolv pbf [pbfevery val] [cutoff val] -

[rxnf_cutoff val] [cavity_cutoff val] -

[low_res | med_res | high_res] [debug val]

PBF is a Poisson-Boltzmann Solver. It takes as input a set of
atomic coordinates, their charges and radii, a solvent radius,
and dielectric constants for the solute and solvent and computes
the electrostatic potential from the resulting Poisson-Boltzmann
equation. The reaction-field energy (electrostatic interaction of
the fixed atomic charges with the induced surface charges at the
solute/solvent interface) and gradient are then calculated. The
reaction-field terms effectively represent the average interaction
between the solute molecule(s) and the solvent. The advantage
of this approach is that the large number of solvent molecules
typically used in a solution-phase molecular simulation or min-
imization are not required, thereby dramatically reducing the
computational expense. While treating the solvent as a contin-
uum rather than a collection of discrete molecules is clearly an
approximation, it has been shown to be a fairly good one for
many types of calculations.

The novel feature of PBF over other algorithms used to solve
the Poisson-Boltzmann equation is the use of a finite-element
mesh with tetrahedron grids. This approach allows the density
of grid points used in solving the discretized equations to be
optimized such that accurate results may be achieved with a
minimal number of grid points and hence with minimal compu-
tational effort. For example, a high density of points is required
at the solute/solvent interface to compute a accurate and numer-
ically stable reaction-field gradient. Other approaches using, for
instance, a finite-difference method with cubic grids do not have
this flexibility and must use a large number of points to obtain
comparable accuracy. The use of a finite-element mesh also al-
lows a high density of points to be used in a particular region of
interest, e.g., a enzyme-binding site and a lower density of grid

46 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

points elsewhere in the system, again minimizing the computa-
tional effort.

pbfevery This parameter sets the frequency in timesteps
when a PBF calculation is performed. In between
timesteps use the most recent PBF energies and
forces.

cutoff The cutoff parameter specifies how far any atom
must move from the coordinates used in the previ-
ous calculation before a new Reaction Field calcula-
tion is performed. The default value is 0.1 Å. If all
atomic coordinates have moved less than this cutoff,
then the previous calculated energy and forces are
used for that step in the minimization. Preliminary
results suggest that the pbf energy and gradient are
slowly varying functions of the atomic coordinates,
relative to the other energies and forces involved in
a typical molecular mechanics calculation. A rela-
tively large value of cutoff can significantly reduce
the required computational time at the expense of
some loss in accuracy.

cavity_cutoff
The keyword cavity_cutoff is used for cavity term
recalculation. It is similar to the keyword cutoff.

low_res Use the low grid point resolution setting. This is
the default.

med_res Use a medium grid point resolution setting.

high_res Use a high grid point resolution setting. This is the
most expensive setting, but also the most accurate.

debug Setting debug to a nonzero value causes diagnostic
messages and files to be printed for each calculation.

The consolv pbf parameter files are in the directories
$SCHRODINGER/impact-v4.0/data/opls

$SCHRODINGER/impact-v4.0/data/opls2000

and all start with pbf. The files should not need to be modified
by the user on an ongoing basis. A few parameters, however,
may need to be changed occasionally. For example, the dielectric
constants used for the solutes and solvent can be changed in the
‘pbf.com’ file. Also the solvent radius can changed by editing
the same file.
If the PBF model is activated, then the following line should
appear in the output:

Impact 4.0 Command Reference Manual 47

Chapter 2: Setup System

%IMPACT-I (mmstd): Using Poisson-Boltzmann Model

In the energy-decomposition printout provided by Impact dur-
ing the course of a minimization, the continuum-solvent energy
is provided under the heading ‘RxnFld(Pbf)’. These energies
include the interactions between the atomic-point charges and
the induced charges at the solute/solvent interface.
Because of the large memory requirements for medium-sized and
larger proteins, PBF currently writes some arrays to disk and
then reads them back in as needed. Currently only one file is
being written to disk, ‘zzZ_Ctbl_Pbf_Zzz’. Every effort is made
to remove this file after a calculation has completed. However,
if a calculation is aborted or something goes amiss, this file may
be left on the disk.
Examples:

• mmechanics consolv pbf cutoff 0.1

• mmechanics consolv pbf low_res cutoff 0.1 cavity_cutoff 0.9

consolv agbnp
• mmechanics consolv agbnp

AGBNP is an analytical implicit solvent model based on the
pairwise descreening (PD) Generalized Born (GB) model and
a non-polar solvation free energy (NP) estimator which takes
into account independently the work of cavity formation and the
solute-solvent van der Waals interaction energy. The model and
its derivation are described in detail in the following paper: E.
Gallicchio, R. M. Levy, AGBNP: An Analytic Implicit Solvent
Model Suitable for Molecular Dynamics Simulations and High-
Resolution Modeling, J. Comput. Chem., 25, 479-499 (2004).
AGBNP is unique among pairwise descreening GB models in
that the overlap scaling coefficients depend on solute conforma-
tion and are computed from purely geometric considerations,
rather than being fit to experimental and Poisson Boltzmann
data. Hydrogen atoms do not contribute to descreening. The
non-polar hydration free energy estimator is composed of two
terms. The first, related to the cavity hydration free energy,
is proportional to the solute surface area of each atom through
surface tension parameters that depend on atom type. The sur-
face area is defined as the van der Waals surface area obtained
by increasing the van der Waals radius of each atom by 0.5 Å.
The surface area of each atom is calculated using an analytical
algorithm based on the same method used to calculate overlap
scaling factors. Hydrogen atoms do not contribute to the solute
surface area, that is they can be thought as of atoms of zero
radius in this respect. The second component of the non-polar
hydration free energy model is a solute-solvent van der Waals

48 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

interaction energy estimator that depends on the Born radius
and Lennard-Jones parameters of each atom. This estimator
includes dimensionless scaling parameters for each atom type
adjusted to better reproduce solute-solvent van der Waals en-
ergies obtained from explicit solvent simulations. In addition
to the surface tension parameters and van der Waals scaling
parameters, the other parameters of the model, atomic partial
charges and van der Waals radii, are derived from the under-
lying force field without change (partial charges) or with small
modifications (van der Waals radii).
The current AGBNP parameters are stored in a file called
agbnp.param in the directories

$SCHRODINGER/impact-v4.0/data/opls

$SCHRODINGER/impact-v4.0/data/opls2000

$SCHRODINGER/impact-v4.0/data/opls2001

$SCHRODINGER/impact-v4.0/data/opls2003

depending on the active force field version. The format of the
agbnp.param file is as follows:

Column Content
1 Type index
2 OPLS symbolic type
3 van der Waals radius [Å]
4 non-polar gamma parameter [(kcal/mol)/Å2]
5 non-polar alpha parameter [dimensionless]
6 non-polar delta parameter [kcal/mol]
7 correction gamma parameter [(kcal/mol)/Å2]
8 correction alpha parameter [dimensionless]
9 correction delta parameter [kcal/mol]
10 screening parameter [dimensionless]

Lines that begin with ’#’ are comments. Lines beginning with
dielectric_in and dielectric_out set the dielectric solvent
of the solute and the solvent, respectively, and should precede
any other non-comment line. gamma above refers to the surface
tension parameters, alpha to the solute-solvent van der Waals
scaling parameters, the values of the delta parameters should
be left to their default values (zero). The values of the non-
polar parameters used internally are the sum of the pure and
correction values. However the non-polar energy derived from
each is reported separately as a pure non-polar energy and a cor-
rection energy term. The correction energy term has the same
expression as the non-polar estimator (this could change in the
future) but it is calculated using the set of correction parame-
ters rather than the pure non-polar parameters. The screening
parameter in column 10, normally set to 1 for all atom types, is
described in the following paper: A. K. Felts, Y. Harano, E. Gal-

Impact 4.0 Command Reference Manual 49

Chapter 2: Setup System

licchio, and R. M. Levy. Free energy surfaces of beta-hairpin and
alpha-helical peptides generated by replica exchange molecular
dynamics with the AGBNP implicit solvent model. PROTEINS:
Structure, Function, and Bioinformatics, 56, 310-321 (2004). To
modify the AGBNP parameters edit a copy of the agbnp.param
file in the working directory. The agbnp.param file in the work-
ing directory takes precedence over the agbnp.param file in the
data directory.
If the AGBNP model is activated the following line should ap-
pear in the output:

%IMPACT-I: Using AGBNP: Analytical Generalized Born Model + Analytic

Non-Polar Hydration Model

The running AGBNP energy components are reported under the
labels RxnFld(AGBNP) and NPolar(AGBNP) in the output file, for
the electrostatic and non-polar components (pure plus correc-
tion) respectively. The energy summary at the end of the out-
put file lists the total AGBNP solvation free energy under AGBNP
Solvation Energy, the electrostatic component of the solva-
tion free energy under AGBNP Solvation Energy (polar), the
pure non-polar component under AGBNP Solv. Energy (non-
polar), and the correction term under AGBNP Solv. Energy
(correction).
There are no options associated with the consolv agbnp set-
ting. AGBNP applies the same distance cutoff as specified by
the energy parm cutoff command (see Section 2.3.1.6 [Parm
(energy)], page 40) for the GB pair energies and for the pairwise
descreening calculation of Born radii.

2.3.4.2 Mmechanics Pff

Set up a polarizable force field potential function. Only a few of the options
described in Section 2.3.4.1 [Mmechanics (setpotential)], page 42 are appro-
priate for use with PFF. For more information on the theory, see Section 1.7.3
[PFF (ffield)], page 13. In order to use the PFF, you must also specify SET
FFIELD OPLS_PFF_2000 or OPLS_PFF_2003 (see Section 2.1.2 [Ffield (set)],
page 17).
The PFF module is only available under special license from Schrödinger.

• mmechanics pff [consolv pbf npsolv]

PFF calculations should always use a large enough cutoff to encompass the
entire system.

consolv pbf npsolv
Use the parameterized PBF continuum solvent model with the
polarizable force field potential function. The PBF and non-
polar models are in Section 2.3.4.1 [Mmechanics (setpotential)],

50 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

page 42, but the nonpolar parameterization used here is opti-
mized for PFF.
Caution: The keywords pbf and npsolv should always be used
with pff consolv as their parameterizations are coupled.

The corresponding parameter file to be read in must be ‘parampff.dat’ in
the read parm subtask, such as in the following example:

SETMODEL

setpotential

mmechanics pff consolv pbf npsolv

quit

read parm file parampff.dat noprint

energy parm cutoff 100.0 listupdate 10 diel 1.0 nodist

QUIT

2.3.4.3 Type

Read the type of potential from the command line. Currently only the
keywords harmonic and morse (for harmonic and morse potentials) are im-
plemented for bonds, and this choice is only available for the AMBER86
force field. With OPLS, bonds are always harmonic.

• type intramolecular name spec -

bond [morse | harmonic]

2.3.4.4 Weight

Change the weights of terms in the potential function. Unless otherwise
indicated below, the weights are all initialized to 1.0 when mmechanics is
used.
Caution: Despite the terminology below, intramolecular nonbond terms are
affected both by intramolecular and intermolecular electrostatic and LJ
weights. The total nonbond weight is the product of the intramolecular
(within one species) and intermolecular (between species) weights.

• weight intramolecular name spec -

[bond | angle | torsion | el14 | lj14 | elin | ljin | hbin] weight

The intramolecular keyword is used to change the weights of intramolecu-
lar terms (those within a single species). The elin, ljin, and hbin keywords
change the weights for all included nonbond pairs within the molecule; el14
and lj14 change them only for “1-4” pairs, i.e., atoms at the outer ends of a
quartet that defines a torsion angle. hbin is only used with the AMBER86
force field.

• weight intermolecular -

[vdw | eel | hbond | hbelectrostatics] weight

The intermolecular keyword is used to change the weights of intermolecu-
lar terms within or between species, thus there is no name spec designation.
hbond and hbelectrostatics are only used with the AMBER86 force field.

• weight constraints name spec -

Impact 4.0 Command Reference Manual 51

Chapter 2: Setup System

[noe | torsion | hbond] weight

• weight constraints name spec buffer weight -

[halfwidth sigma]

The constraints keyword defines the weights of various restraint force con-
stants terms. The noe, torsion, and hbond terms are zero by default and
define NOE distance and torsion restraint weights.
The buffer constraint energy is a harmonic term is applied to all “buffered”
atoms specified via zonecons commands. See Section 2.3.9 [Zonecons (set-
model)], page 56. The default buffer is 25 kcal/(Å2 mol). You can control
the sigma halfwidth value via the halfwidth keyword, whose default is 0.0,
equivalent to a harmonic constraint.
Caution: buffer is not a per-species parameter, but is applied to all buffered
atoms in the system.

2.3.4.5 Constraints
Read in distance and torsional constraint lists for Monte Carlo structural
refinement (see Section C.1.5 [MC Refinement (tutor)], page 237) from a file
or the main input file.

• constraints name spec noec distance -

con1 num con2 num -

[file fname]

• constraints name spec noec torsion -

nsec num_sections -

(fres num lres num tpsi value -

tphi value range value) repeated num sections times

distance signals that distance constraints will be read in.

torsion signals that torsion constraints will be read in.

file name of constraint file (if different from main input file). This
file has the following 6 or 7 fields—in order but free format: (the
individual NOE weight is optional see Notes below)
resn atna resn atna lower bound upper bound noe weight

con1 number of H-H distance constraints, type 1, to read in.

con2 number of distance constraints between heavy atoms, type 2, to
read in.

If prochiral assignments can be made and you know the
constraint is between HB1-HG2 then the atoms names
should be specified as such and no averaging over equiv-
alent hydrogens will be implemented.
If prochiral assignments can not be made (or in the case
of equivalent H atoms on methyl groups) you need to spec-
ify only the character part of the atom name. In this case
averaging over equivalent hydrogens is automatically imple-

52 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

mented, ie., for a methylene proton-methyl group interac-
tion.
1. HB1-HG will result in no averaging on the methylene

but the methyl group will be averaged
2. HB-HG will result in averaging over the protons in the

methylene group and the protons in the methyl group.

Number of sections of torsions to be constrained.

tphi Target value for φ angles (for constraining protein
secondary structure).

tpsi Target value for ψ values (for constraining protein
secondary structure).

range Allowed range (i.e., constraint will be tphi ± rang).

ncon Number of constraints to be read explicitly.
These keywords are read in free format nsec times 4(res. no., atom name)
target value, range. Caution: The weight for the individual NOE constraint
is multiplied by the weight for the entire NOE term. It is one by default and
can be set to any arbitrary value except zero.

2.3.5 Subtask Sgbp

This keyword sets various SGB continuum solvent simulation parameters.
It has no effect unless mmechanics consolv sgb is used in a preceding
setpotential subtask to activate the SGB method.

• sgbp grid_size max dock_grid_size glide_max -

min_grid_size min printe [0|1] printf [0|1] -

active_reg_incr val buffer_reg_size val accuracy val -

epsout val hydrogen_radius val

grid_size
The maximum number of grid points each atom can have. The
default value is 70.

dock_grid_size
In a Glide calculation, the maximum number of grid points each
atom can have, the default is 30.

min_grid_size
The minimum number of grid points each atom can have. The
default value is 20.

printe If set to 1, print the SGB energy. The default is 0.

printf If set to 1, print the SGB forces. The default is 0.

active_reg_incr
When setting up the active region region, this amount is added
to it. The default is 0.

Impact 4.0 Command Reference Manual 53

Chapter 2: Setup System

buffer_reg_size
This defines the buffer region size; the buffer region is located
between the active region and the frozen region.

accuracy The threshhold value used with the singlelong multiple time
scale scheme, and is related to the number of surface grid points
used. The default value is 0.00001. Smaller values result in
denser grids.

epsout The exterior (solvent) dielectric constant. The default is 80.0,
a value typical of water simulations. (The interior dielectric
constant is set by enrg parm diel, see Section 2.3.1.6 [Parm
(energy)], page 40.)

hydrogen_radius
The atomic radius of hydrogen, used in generating the surface.
The default value is 1.0.

2.3.6 Subtask Mixture
• mixture [density val | keep num] [overlap val]

This command sets optional parameters for the removal of excess solvent
molecules when solvent and solute are mixed. If mixture is not present then
the default is to remove all solvent molecules that overlap (as defined below)
with any solute atom. When the mixture command is issued only up to a
maximum of N solvent molecules are removed. N is calculated in one of
two ways. Either from the effective solute volume (which can be controlled
using the density parameter) or from the number of solvent molecules not
to be removed (the keep parameter). A molecule is considered for removal
if the ratio of the distance d and the sum R1+R2 of the van der Waals radii
of any atom of the solvent molecule and any atom of the solute is smaller
than a overlap threshold value (the overlap parameter). If the minimum
distance d is larger than 10 Å a solvent molecule is not considered for removal
regardless of the value of the overlap threshold value. If more than N solvent
molecules are flagged for removal only the N solvent molecules with the
smallest minimum distance d are removed. If instead the number of solvent
molecules flagged for removal is less than N all flagged solvent molecules are
removed.
density Keyword density is used to set the solute density. The default is

1 g/cm3. The volume of solvent removed is equal to the effective
volume of the solute. The effective solute volume is calculated
from the solute mass and the solute density. The larger the
solute density the smaller the effective solute volume and thus
the smaller the maximum number N of solvent molecules to be
removed.

keep Keyword keep is used to set explicitly the minimum number of
solvent molecules remaining after removal. The default is 0. The

54 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

maximum number N of solvent molecules to be removed is set
as the current number of solvent molecules minus the number
of solvent molecules to keep. The keep option preempts the
density option if both are given.

overlap The overlap option is used to set the overlap threshold value
below which a solvent atom is considered to overlap with a solute
atom. The default is 1. Decreasing the overlap parameter makes
it less likely for two atoms to overlap.

2.3.7 Subtask Solute

This subtask is used to place solute molecules at certain positions in the
container “box” of solvent used for the simulations.

2.3.7.1 Translate
The keyword translate brings the center of mass (COM) of the system of
solute molecules to the origin (center of the box), and also finds the longest
distance between atoms along the principal axis, which determines the box
edge lengths. The option skip says to ignore the last num residues of the
solute when performing the operation. With rotate, the solute is rotated
so that the principal moments of inertia coincide with the x, y, z axis. The
longest axis of the molecule is oriented along the z axis. Skip has the above
meaning. If rotate diagonal is given on the command line the rotation
is such that the principal moment of inertia lies along the diagonal of the
simulation box (which must be cubic for this option to work).

• solute translate [rotate [diagonal]] name spec [skip num]

Caution: skip num excludes residues that may not have meaningful coor-
dinates yet (such as counterions) from the translation/rotation operation.
This parameter may be read in for as many different species as necessary.
The value given for skip means that the last num residues of the species are
ignored in the translation/rotation of the solute.

2.3.7.2 Read
The keyword read is used to read in COM coordinates of the solute.

• solute read xcm val ycm val zcm val

2.3.8 Subtask Solvent

Build solvent system.
• solvent new [bx val by val bz val] [density val]

• solvent old read fname [bx val by val bz val] [place charge name spec -

positive num+ negative num- [electrostatics] [cutoff val]]

new Create a set of coordinates for solvent atoms provided box edge
length (bx, by, bz) and bulk density (g/cm3) of solvent. Molecules
are placed on a cubic lattice.

Impact 4.0 Command Reference Manual 55

Chapter 2: Setup System

old Reads in solvent coordinates and box edge length from a pre-
existing file fname, such as ‘spchoh.dat’ or ‘tip4p.dat’. The
system is enhanced and/or clipped to the right size specified by
the bx, by, bz parameters.

bx,by,bz Length of box edge in x, y and z directions.
place Charges may be placed at this time using the keyword place

charge, where the program will read the number of positive
and negative charges to be placed. (see Notes below).

electrostatics
Electrostatics dictates that the added charges will replace
those solvent molecules having the highest electrostatic potential
due to all solute molecules.

cutoff Cutoff is used in the placement of ions and affects the calcula-
tion of the electrostatic potential (default = 0.0).

Notes:
1. If the system is a mixture, the program uses default values for bx, by, and

bz based on the longest distance along the principal axes calculated for
the solute system when the command solute translate was executed.
(Actually, bx = lx + dx, by = ly + dy, bz = lz + dz, where lx, ly, lz are
longest distance along the principal axis, and dx, dy, dz are margins to
allow at least two layers of solvent molecules in between the solute and
box wall).

2. If the solute subtask precedes this command, the solvent molecules
overlapping with solute atoms are removed.

3. The keywords place charge assumes that the ions have been built in
task create (build primary ions) with the positive ions built first and
then the negative ions.

2.3.9 Subtask Zonecons
This subtask is used to constrain (freeze) or restrain (buffer) various regions
of a molecule based on options specified by the user.

• zonecons [auto | [[freeze|genbuffer] | chain | resseq | -

residue | atom | sphere] name spec sub-options]

There are seven types of zonecons subtasks described below. All but
zonecons auto are additive, so you can use combinations of them. By de-
fault, all atoms are free to move, as if there are no zonecons subtasks at
all.
Any buffered atoms are restrained using an harmonic potential centered on
the original atom position. Any atom position can be restrained this way.
A buffer zone is often used to to define an intermediate zone between a fixed
region where the atom positions are frozen and the free region where the
atom positions are not restrained. The buffer option is also often used to

56 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

perform constrained minimizations. The force constant of the restraining
harmonic potential is user selectable, see Section 2.3.4.4 [Weight (setpoten-
tial)], page 51.

2.3.9.1 Auto
Use the frozen/buffered settings from an input Maestro file.

• zonecons auto

Maestro files written by Maestro specifically for Glide, Liaison, or QSite jobs,
or written as output from a Glide, Liaison, or QSite job, will contain an extra
parameter (internally named i_i_constraint) for each atom. Zonecons
auto uses this parameter in lieu of any other zonecons option, where the
values 0, 1, and 2 correspond to free, frozen, and buffered, respectively.

2.3.9.2 Freeze/Genbuffer

Freeze or restrain (buffer) a specified group of atoms, e.g., all heavy atoms,
all C atoms, all N atoms, all O atoms, or all atoms.

• zonecons [freeze|genbuffer] name spec [all | allC | allN | allO | allheavy]

This is the general freezing or restraining option, it can be used to
freeze/restrain all atoms, all carbon atoms, all nitrogen atoms, all oxy-
gen atoms, or all heavy atoms. The general restraining option is called
genbuffer to differentiate it from the buffer designation available in some
of the other zonecons options.

2.3.9.3 Chain
Chain-based scheme, select any chain in a protein to be in fixed, free, or
buffer region

• zonecons chain name spec [chainname name [fixed|free|buffer]]+

This is the chain option, which is used to classify the whole chain with name
to be in fixed, free, or buffer regions.

2.3.9.4 Resseq
Residue sequence-based scheme, such as from residue number 20 to 50, to
be in fixed, free, or buffer region

• zonecons resseq name spec [resn fres to lres -

[all | allC | allN | allO | allheavy] [fixed|free|buffer]]+

This is the residue sequence option, which states that in the specified residue
sequence, starting from first residue fres to last residue lres, the specified
atom types (all atoms, all carbons, etc.) are to be in fixed or free or buffer
regions.

2.3.9.5 Residue
Residue-based scheme, such as backbone, sidechain, or amide of a residue to
be in fixed, free, or buffer region

Impact 4.0 Command Reference Manual 57

Chapter 2: Setup System

• zonecons residue name spec [resn num -

[all|backbone|sidechain|amide|Calpha|Ncap|Ccap] [fixed|free|buffer]]+

This is the residue option, which states that in the specified individual
residue(s), with residue number(s) num, the specified atoms (all, backbone,
sidechain, amide, α carbon, etc.) are to be in fixed or free or buffer regions.

2.3.9.6 Atom
Atom-based scheme, for any particular atom

• zonecons atom name spec [atmn num [fixed|free|buffer] resadj [0|1]]+

The atom option, the lowest level option, which classifies each atom to be
in the fixed or free or buffer regions.

The option resadj is used for residue-based adjustment; if it equals 1, then
the whole residue associated with that particular atom will be classified in
the the same region (in this case the residue becomes the basic operational
unit). The default value for resadj is 0, which means no residue-based
adjustment is performed.

2.3.9.7 Sphere
Sphere-based scheme, freeze/relax any atoms inside a sphere with a center
and radius

• zonecons sphere [center x val y val z val | name spec resn num atomname name] -

[freeze | relax] rad rad buffrad buffrad resadj [1|0]

This is the sphere option, which is used to relax or freeze a sphere with the
center located at residue number num and atom name name, and a radius
of rad. The buffrad is the radius for buffer, the shell between radius rad and
buffrad becomes the buffer region. It should be noted that buffrad should
be bigger or equal than rad.

The option resadj has the same meaning as in the atom option, except the
default value here is 1, which means the residue-based adjustment is turned
on in sphere option by default.

2.3.9.8 Example Zonecons Input

Here is an example for how to use the various options for zone constraints.
See Section C.2.1 [Frozen (example)], page 243 for more details.

58 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

setmodel

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

enrg parm cutoff 20.0 -

listupdate 100 diel 1.0 nodist print 1

zonecons freeze name hiv allheavy

zonecons chain name hiv chainname A free chainname B fixed

zonecons sphere name hiv resn 20 atomname CA relax rad 10.0 buffrad 12.0

zonecons residue name hiv resn 10 backbone fixed resn 11 sidechain free

zonecons resseq name hiv resn 20 to 40 all buffer resn 41 to 100 all fixed

zonecons atom name hiv atmn 45 free atmn 50 fixed atmn 52 buffer

quit

2.3.9.9 Zonecons Keywords

Some of the keywords used above for various zonecons subtasks have the
following meanings. Not all keywords are appropriate for every zonecons
option, see the above syntax diagrams for a list of those allowed.

freeze General freeze option, to freeze all atoms, all carbons or all heavy
atoms.

chain Chain option, to freeze/relax/buffer proteins by chain name.

resseq Residue sequence option, to freeze/relax/buffer proteins by
residue sequence.

residue Residue option, to freeze/relax/buffer a residue’s backbone,
sidechain, etc.

atom Atom option, to freeze/relax/buffer any particular atom.

sphere Sphere option, to freeze/relax a sphere with a center and a ra-
dius.

free Free to move.

buffer In the buffer region.

fixed In the frozen region.

resadj Residue based adjust, default value is 0 for atom level option,
and 1 for sphere level option. If it equals 1, then the whole
residue will share the same region with one or more atoms spec-
ified by the zonecons subtasks.

allC All carbon atoms.

allN All nitrogen atoms.

allO All oxygen atoms.

allheavy All heavy atoms, atoms except H.

Impact 4.0 Command Reference Manual 59

Chapter 2: Setup System

backbone Backbone atoms in a residue.

sidechain
Sidechain atoms in a residue.

amide Amide group atoms in a residue.

Calpha Alpha carbon atom in a residue.

Ncap N-terminal cap in a residue (NH2, NH3+).

Ccap C-terminal cap in a residue (COOH, COO-).

center To read in the cartesian coordinates of a sphere center directly.
The center can also be read in by specifying an atom name
atomname in a residue resn in a specie name spec.

rad value Radius of frozen or free zone.

buffrad value
Radius of buffer zone. The value of buffrad should be bigger
than rad.

chainname name
Chain name to be relaxed or fixed.

atomname name
Name of atom at center of sphere.

resn fres to lres
Starting from first residue fres and ending with last residue lres

Please note: resn (or resnumber or rnumber) residue numbers supplied in
the main input file have the following meanings: positive numbers mean the
residue numbering used in the original PDB file; negative numbers mean the
reordered Impact residue numbers, i.e., sequential, starting with 1; 0 means
all applicable residues.
Caution: The zonecons option alters many structural arrays. It is assumed
that all bonds angles and torsions that lie completely in frozen regions will
not change and therefore their entries in the structural arrays are deleted.
Also, in later energy calculations non-bonded or hydrogen bond pairs for
which both atoms are frozen are not stored or calculated.

2.3.10 Subtask QMregion (QSite)

The QSite module allows a section of a protein and/or whole ligand(s) to
be treated quantum mechanically while the rest of the system is treated by
OPLS-AA. Gas phase 6-31G* Hartree-Fock (HF) and DFT energies, mini-
mizations, and transition state optimizations are currently implemented for
all amino acids, ligands, ions, and bound waters. Single-point LMP2 calcu-
lations are also supported. QSite solvation using continuum solvent (PBF
model) are possible as well.

60 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

2.3.10.1 QSite Overview

The QM/MM interface consists of a frozen localized single-bond QM molec-
ular orbital at each QM/MM boundary.4 The QM and MM regions interact
via a Coulomb interaction (between MM charges and the QM wave function)
and a van der Waals interaction (van der Waals parameters are employed
for both the QM and MM atoms). In addition there are QM/MM hydro-
gen bonding terms. Specialized MM-like correction parameters are used
for stretches, bends, and torsions involving atoms that touch or span the
QM/MM interface. These parameters are fit to reproduce local-MP2/cc-
pVTZ(-f) quantum chemical conformational energetics of each residue.
A QSite job requires both Impact and Jaguar input files. The job is initially
launched using the Jaguar program driver script jaguar. Once Jaguar de-
tects that it is doing a QSite job, it calls Impact, which then reads the main
input file (with protein, ligand data) and the QM region specifications. Im-
pact calculates the requisite MM energy/gradient terms and creates a Jaguar
input file for the QM region only. Control is then passed back to Jaguar,
which calculates the total QM portion of the QM/MM energy/gradient.
QSite geometry optimization uses an adiabatic approach. This means that
a full minimization of the MM region is performed by Impact before each
QM geometry step taken by Jaguar. During the QM step all of the MM
region except for a few atoms at the QM/MM interface are frozen in the
QM optimization/geometry steps and similarly the QM region is frozen in
the MM optimization process.
In defining the QM region for a QSite job, it may be necessary to use an
input structure that is not a correct Lewis structure. Ordinarily, Impact
would reject such a structure, upon reading it in via the build primary type
auto command. In order to bypass Lewis structure checking in such cases,
use the notestff keyword in the build primary command for reading in
the structure that will contain the QM region. See Section 2.2.1.5 [Primary
type Auto], page 24 for details of this command and keyword.
The following subsections describe the Impact and Jaguar QM/MM inputs
and illustrate the execution of a QSite run.
Here is the general syntax for the qmregion subtask:

• qmregion [residue name spec [all | resn

num chain chainid insert insertion_code molid num

[cutb num]]

• qmregion atom name spec atom num

• qmregion ion name spec ionn num

4 D.M. Philipp and R.A. Friesner,J. Comput. Chem. 20, 1468 (1999);
R.B. Murphy, D.M. Philipp, R.A. Friesner, Chem. Phys. Lett. 321, 113 (2000); and
R.B. Murphy, D.M. Philipp, R.A. Friesner, J. Comput. Chem. 21, 1442 (2000).

Impact 4.0 Command Reference Manual 61

Chapter 2: Setup System

2.3.10.2 QM protein region

The qmregion residue command is used to specify parts of proteins, or
entire molecules such as ligands or bound waters, as belonging to the QM
region.

The QM region of a protein is specified by making QM/MM cuts or bound-
aries at the bonds emanating from the Cα carbon of any residue. In addi-
tion, whole residues can be designated as QM as long as they are inside the
boundaries of QM/MM cuts at more distant residues. The 5 types of cuts
and associated QM/MM regions are defined as follows and as depicted in
the following figures.

Cut 1: The Cα-N bond forms the boundary, and the Cα atom and its
attachments are in the QM region.

QM region

MM region

Cut #1

Figure QMMM−1; QM/MM regions
for backbone cut type 1.

Cut 2: The Cα-C bond forms the boundary, and the Cα atom and its
attachments are in the QM region.

62 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

QM region

MM region
Cut #2

Figure QMMM−2; QM/MM regions
for backbone cut type 2.

Cut 3: The Cβ-Cα bond forms the boundary, and the side chain is the QM
region.

QM region

MM region

Cut #3

Figure QMMM−3; QM/MM regions
for side chain cut type 3.

Cut 4: The N-Cα bond forms the boundary, and the amide nitrogen (N)
and its attachments are in the QM region.

Impact 4.0 Command Reference Manual 63

Chapter 2: Setup System

QM region

MM region
Cut #4

Figure QMMM−4; QM/MM regions
for backbone cut type 4.

Cut 5: The C-Cα bond forms the boundary, and the carbonyl carbon (C)
and its attachments are in the QM region.

QM region

MM region

Cut #5

Figure QMMM−5; QM/MM regions
for backbone cut type 5.

Except for side chain cuts (type 3), the cut residue must be connected to
another pure (no cut) QM residue. Placing backbone cuts in consecutive
residues is not recommended because the boundary regions will interact too
strongly.

64 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

Cuts in the following residues are not allowed, depending on the molecular
mechanics force field in use: for OPLS2001 and later force fields, sidechain
cuts in GLY, PRO, and ALA, and backbone cuts in PRO; for earlier force
fields, sidechain cuts in ARG, SER, THR, PRO, GLY, and ALA, and back-
bone cuts in GLY and PRO. To treat these residues as QM regions, place
backbone cuts on the adjacent residues on either side.
As an example, suppose the ala-gly-ser section of a . . . lys-ala-gly-ser-phe. . .
protein is to be represented in a QM fashion, with OPLS1999 in use for the
MM region. (The same reasoning would apply to the ala-gly section with
OPLS2001.) In this case a cut of type 5 (or 1 to include the lys sidechain in
the QM region) would be made in lys, and a cut of type 4 or (2 to include
the phe sidechainin the QM region) in phe. In addition, residues ala-gly-ser
would all be specified as fully QM, i.e. with no cuts. More commonly a set
of sidechain cuts of type 3 might be made for residues that make important
contacts with a ligand to allow the contact regions and the ligand all to be
treated quantum mechanically.
Protein QM regions are specified in task setmodel with syntax like the
following:

qmregion residue name prot resn 142 molid n cutb 3

This directive places the sidechain of residue 142 in species prot, molecule
number n in the QM region. The integer following cutb specifies the type
of cut to be made.
Alternatively, the whole residue can be made QM (no cut) by omitting the
cutb-value pair:

qmregion residue name prot resn 142 molid n

The QM/MM interface requires that each protein segment of the QM region
be defined either by a single cut of type 3, or by matching cut specifications
for the N- and C-terminal residues of the segment in question. In the latter
case, all intervening residues must explicitly be specified as QM in qmregion
specifications.
Note that QSite requires that the whole system fit into one Impact species.
This can be done by putting all molecules (proteins or ligands) into one
species using the mole notation in the build primary commands, or by
creating a single entry containing all the molecules in the Maestro Project
Table or Workspace. QSite calculations can be carried out with PBF (but not
SGB) implicit water or can be run with the bound waters typically found
in PDB files. Solvent boxes, which require periodic boundary conditions,
however, cannot be used.
A ligand or bound water molecule can be designated as a pure QM region
with the same syntax as is used for an entire residue (between cuts, but not
containing any cuts itself) in a protein:

qmregion residue name prot resn rnum molid molnum

Impact 4.0 Command Reference Manual 65

Chapter 2: Setup System

where residue number rnum, in molecule number molnum, denotes the de-
sired molecule in species prot. This syntax (with no cutb specification) des-
ignates the whole molecule as a QM region. Note that QM/MM boundaries
cannot currently be made between ligand atoms.

2.3.10.3 Individual QM Atoms

The syntax
qmregion atom name spec atom num

indicates that the individual atom number num in species spec is to be
included in the QM region.

2.3.10.4 QM Ions

Ions can be included in the QM region first by building the ion or ions. The
following illustrates the placement of a Zn2+ ion:

CREATE

...

build newres zn2+ file zn

build primary ions name prot zn 1 xyz x 36.921 y 44.908 z -7.111 end

...

where build newres creates a Zn2+ residue with the name zn (the 1 following
zn is a specification for one ion), and build primary ions adds the ion into
the previously defined molecule of the species prot at coordinates (x,y,z).
The specification of the ion as a QM region is done as follows:

qmregion ion name prot ionn 1

specifies that ion number (ionn) “1” of species prot should be treated as
a QM ion. When multiple ions are present, one such qmregion directive
should be given for each ion that is to be QM.

2.3.10.5 Basis set specifications.

All of the standard basis sets used in Jaguar are available for the QM region
of a QSite setup. Then basis sets can be specified within the Impact input
as follows.

• basis name spec [atom num | resnumber num | nil] [radius rad] basis bset

The default basis used is 6-31G* (LACVP* for metals), which must be en-
tered into the Jaguar input file (see below) regardless of other basis set
specifications. To specify the basis on a particular residue the following
syntax applies:

SETMODEL

..

qmregion residue name dipep resn 2 cutb 3

..

basis name dipep resnumber 2 basis cc-pvtz(-f)

..

QUIT

66 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

This will setup a cc-pvtz(-f) basis on the QM atoms of previously speci-
fied QM residue 2. Note that atoms comprising the QM/MM cut and their
bonded neighbors will automatically stay at 6-31G*. This restriction is nec-
essary since the QM/MM boundary region is parametrized with 6-31G*.
The code will automatically keep the necessary 6-31G* basis sets regardless
of basis set specifications made by the user.

The syntax for changing the basis set within a specified radius of a chosen
atom is:5

SETMODEL

..

qmregion residue name dipep resn 2 cutb 3

..

basis name dipep atom 34 radius 5.0 basis cc-pvtz(-f)

..

QUIT

will change the basis set to cc-pvtz(-f) on atoms within 5 Å of atom number
34. This atom must be in a residue or a ligand in the QM region as specified
by the qmregion commands.

2.3.10.6 QSite energy/minimization:

Single point QSite energies can be obtained using task analysis with the
subtask qmme, e.g.,

ANALYSIS

qmme

QUIT

will tell Impact to generate a QM/MM energy.

QSite geometry optimizations require the usual Impact MM minimization
section, e.g.:

MINM

conjugate dx0 0.05 dxm 3.0 rest 50

input cntl mxcyc 10000 rmscut 1.9e-1 deltae 0.5

run

QUIT

with no special QSite flags.

The following Impact example, and the Jaguar input example below, are for
a small polypeptide with a water molecule. A threonine residue and water
molecule constitute the QM region and are treated at the B3LYP level. The
rest of the structure is treated with molecular mechanics.

5 N.B.: The radius option is not available via Maestro, but you can add it by hand into the
input file

Impact 4.0 Command Reference Manual 67

Chapter 2: Setup System

CREATE

build primary name species1 type auto read maestro file -

"qsite.mae"

build types name species1

QUIT

SETMODEL

setpotential

mmechanics

quit

read parm file -

"paramstd.dat" -

noprint

energy parm dielectric 1 nodist -

listupdate 10 -

cutoff 12

energy rescutoff byatom all

zonecons auto

qmregion residue name species1 resn 4 molid 1

qmregion residue name species1 resn 691 molid 2

basis name species1 resnumber 691 basis 6-31G

qmregion residue name species1 resn 3 molid 1 cutb 5

qmregion residue name species1 resn 5 molid 1 cutb 4

QUIT

The CREATE task above reads a Maestro file containing both the polypeptide
chain and the water molecule, into the single species species1. Based on the
connectivity data in this file, Maestro and Impact assign molecule numbers
1 to the peptide (because it includes the first atom listed in the file) and 2
to the water molecule (because it includes the next atom listed that has no
covalent bonds to molecule 1).
The qmregion commands describe the cuts between the QM and MM region
in the structure. All of residue number 4 in molecule number 1 is included
in the QM region, as is residue number 691 in molecule number 2: this is
the water molecule. The basis line tells Jaguar to treat residue number
691 with the 6-31G basis set rather than the default 6-31G*. The next line
specifies a cut of type 5 in residue number 3 in molecule 1. Type 5 places
the cut in the C-Cα bond with the sidechain in the MM region. Residue
number 5 in molecule 1 has a cut of type 4, which is through the N-Cα bond
with the sidechain in the MM region.

2.3.10.7 QSite Transition State Optimization

QSite can perform optimizations to transition state structures using three
different methods. The method you choose will depend on what starting
structures you have. See the Jaguar User Manual for more information on
these methods.

• Standard method

68 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

If you only have an initial guess structure for the transition state, QSite
can find the saddle-point closest to the starting structure by maximizing
the energy along the lowest-frequency mode of the Hessian and mini-
mizing the energy along all other modes.

• Linear Synchronous Transit (LST) method
If you have structures for the reactant and product, then QSite can use
a quasi-Newton method to search for the optimal transtion state geom-
etry. Given the two endpoint structures, and an interpolation value be-
tween 0.0 (≡ reactant structure) and 1.0 (≡ product structure), QSite
will try to construct an initial transition state structure at that point
along the reaction coordinate.

• Quadratic Synchronous Transit (QST) method
If you have structures for the reactant, product, and transition state
guess, then QSite will use the same quasi-Newton method as LST does,
but will use your initial guess for the transition state, rather than in-
terpolating as in LST.

Impact input file keywords:
• qmtransition [reactant | product] file fname [gotostruct number]

These keywords are necessary in the Impact input file when you have mul-
tiple structures to include in your calculation, as is required in both LST
and QST. LST calculations require the reactant to be loaded in a normal
build primary command, and the product structure to be defined with a
qmtransition keyword thus. QST calculations require the transition state
guess structure to be loaded by build primary, and both the reactant and
product structures defined by qmtransition.
Jaguar input file keywords:

&gen

igeopt = 2

iqst = [0 | 1 | 2]

qstinit = interpolation_value

&

These keywords are actually Jaguar keywords; see the Jaguar documentation
for more information. Briefly, igeopt=2 tells Jaguar to do a transition state
optimization rather than a minimization. iqst indicates which optimization
method is to be used, standard, LST, or QST, respectively. The LST method
calculates an initial guess structure by interpolating between the reactant
and the product, the qstinit parameter indicates where along the reaction
coordinate this structure should lay; the default is 0.5 (midway between).

2.3.10.8 Jaguar input section:

CAUTION: do not use the "qmme" energy option with a MINM section,
they are not compatible and their simultaneous use will cause erroneous
gradients.

Impact 4.0 Command Reference Manual 69

Chapter 2: Setup System

QSite calculations also require a short Jaguar input file specifying options
specific to the quantum region such as the charge and multiplicity of the
quantum region.
The prototypical input file for running a gas phase QSite optimization looks
like:

&gen

mmqm=1

basis=lacvp*

dftname=b3lyp

molchg=0

multip=1

iacc=1 vshift=1.0 maxit=100

&

where mmqm=1 signifies to Jaguar that a QSite calculation is requested,
dftname=b3lyp requests thar the B3LYP functional be used. Other DFT
methods should not be used with QSite. The basis specification is manda-
tory and will be properly overriden by any basis set specifications made in
the Impact input file as discussed above. molchg=2 is the charge of the QM
region, and multip=1 is its multiplicity. The last three keywords are set in
QSite jobs by default to aid convergence.
The QSite Jaguar input file for a solvation run consists of

&gen

mmqm=1

basis=6-31G*

igeopt=1

isolv=2

nogas=2

&

where isolv=2 requests a PBF solvation calculation and nogas=2 omits a
preliminary gas phase optimization normally done in pure QM solvation
geometry optimization calculations. The nogas=2 option will be set auto-
matically in Jaguar 4.16. The consolv pbf keyword must also be present in
the Impact input file as it is for pure MM solvation calculations.

2.3.10.9 Running QSite

QSite jobs can be run from the command-line by giving both input files to
the impact script. The syntax for running a QSite job is then:

% impact -j job.jaguar.in -i job.impact.inp -o job.log

where job.jaguar.in is the Jaguar input file name (e.g. ‘peptide.in’) and
job.impact.inp is the Impact input file name.
The QM/MM output contains the QM and most of the MM output will ap-
pear in ‘job.jaguar.out’ and the intermediate Jaguar output will appear in
‘job.jaguar.log’ as the job runs in the scratch directory (the Jaguar scratch

6 Jaguar v4.0 releases later than r21 will also set this automatically.

70 Impact 4.0 Command Reference Manual

Chapter 2: Setup System

directory is set in the ‘$SCHRODINGER/jaguar.hosts’ file. The QM/MM en-
ergy in the Jaguar output file has the heading;

Total QM-MM Energy: -3390.09684895821 hartrees

Solvation energies also appear in the Jaguar output file as:
sfinal: -2415.0483 kcal/mol

where sfinal is the solvation energy of the QM/MM system in water relative
to the gas phase.
In addition the total QM/MM solution phase energy is specified in the Jaguar
output as:

(P) Solution phase energy........ -428.00832706556 (Q+R+S).

The solvation energies printed in the Impact output of a QM/MM run are
not the QM/MM solvation energies.
The detailed requirements for running QSite are as follows. The QSite job is
lauched as a Jaguar job using the jaguar run script which should be in the
$SCHRODINGER directory. The Impact and Jaguar inputs should be in the
same directory by default. If it is desired to keep the Impact information in
a separate directory, the following lines should be added to the Jaguar input
file

&impact

mmdir=/wherever/you/want/the/data

&

In general however, you will want to keep all your Schrödinger software
grouped together.

Impact 4.0 Command Reference Manual 71

Chapter 2: Setup System

72 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

3 Perform Simulations

This chapter describes tasks that perform real Impact simulations: energy
minimization, molecular dynamics, Monte Carlo etc. Various new tech-
nologies were implemented in these tasks, such as Fast Multipole Method
(FMM), Multiple Time-step Algorithm r-RESPA, Poisson-Boltzmann Solver
PBF, Surface Generalized Born Model SGB, J-Walking/S-Walking Method,
etc.

3.1 Task Minimize
Minimize a system using either the steepest descent or the conjugate gradient
method. This task may only be called after the structural arrays have been
filled and after a potential energy function has been set using setpotential.
This task is used in many of the included examples.
Results are printed every 10 steps by default, but this value can be adjusted
via the enrg parm print keywords in the SETMODEL task (see Section 2.3.1.6
[Parm], page 40).
Example:

minimize

read coordinates formatted file fname

steepest dx0 value dxm value deltae value

run

plot indiv quit

write coordinates formatted file fname

quit

3.1.1 Subtask Steepest
Use the steepest descent algorithm for energy minimization of a system.

• steepest dx0 value dxm value

dx0 Initial step size (default = 0.05).
dxm Maximum step size (default = 1.0).

3.1.2 Subtask Conjugate
Use the conjugate gradient algorithm for energy minimization.

• conjugate dx0 value dxm value maxit number

dx0 step size
Set the initial step size (default = 0.05).

dxm step size
Set the maximum step size (default = 1.0).

maxit step size
Maximum number of iterations for line search (default = 3).

rest Frequency of restarting with steepest descent (default =
number of atoms ×3).

Impact 4.0 Command Reference Manual 73

Chapter 3: Perform Simulations

3.1.3 Subtask Tnewton

Use the truncated Newton algorithm (copyright (c) 1990 by Tamar Schlick
and Aaron Fogelson, updated November 1998 by Dexuan Xie and Tamar
Schlick, used by permission)1 for energy minimization.
PLEASE NOTE: This minimization algorithm cannot currently be used
with the Fast Multipole Method (FMM) (see Section 2.3.4.1 [Mmechanics],
page 42).

• tnewton [nfull number] [nhscale number] -

[verbose number] [tncut value]

nfull Number of minimization steps per update of the long-range
forces (as defined by the tncut value). The default is 10, and
values higher than 20 are not recommended. Setting nfull too
high can result in unrealistic structures and/or failure of the
minimization. The short-range forces are updated at every min-
imization step.

nhscale Scale factor for the size of the Hessian matrix. The amount
of memory allocated for this matrix will be the nhscale value
times the number of atoms in the system. The default is 50.

verbose Controls the amount of printing. The default is 0. A positive
value will result in a large amount of output, and is not recom-
mended in general.

tncut Cutoff distance between short-range and long-range forces.
Forces between atoms more distant than this will be calculated
only every nfull minimization steps, as opposed to every step
for the short-range forces. The default is 10.0 Å.

3.1.4 Subtask Input
This subtask inputs parameters necessary for the minimizer.

• input cntl [mxcyc num] [rmscut val] [deltae val]

mxcyc The maximum number of cycles for the minimization (default
= 100).

rmscut Criteria for convergence of the RMS gradient (default = 0.01).

deltae Criteria for convergence of the change in energy for each atom,
average over the whole system (default = 1.0 · 10−7).

Important Notes:

1 For details, see Xie, D. and Schlick, T., “Remark on the Updated Truncated Newton
Minimization Package, Algorithm 702,” ACM Trans. Math Softw., 25, 108-122, March
1999, and Xie, D. and Schlick, T., “Efficient implementation of the truncated-Newton
algorithm for large-scale chemistry applications,” SIAM J. Opt., 10: 132-154, October
1999.

74 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

1. The values for both rmscut and deltae must be met before a run is
converged.

2. The minimization will stop when the convergence criteria are met.

3.1.5 Subtask Run

This command signals the program to start running the minimization. All
other parameters must be set correctly before run is executed.

3.1.6 Subtask Plot

Use the standard plot routines to plot energies of a system in a graphical
output format. This command must be performed after the run command
is invoked.

• plot [individual | superimpose | group] postscript file fname

• plot [individual | superimpose | group] lineprint [file fname]

individual
Plots each individual energy term vs. cycle number.

superimpose
Superimposes all energy terms on one plot.

group Superimposes groups of terms as follows:
1. Bonds, angles, torsions, and 1-4 terms.
2. Constraints.
3. Nonbonded—Lennard-Jones, electrostatics and Hydrogen-

bond.

Caution: The plot options described above are specific to the minimize
task. The delay, postscript and other plot options are described in detail
in Section B.1 [Plot (plot)], page 227.

3.1.7 Subtasks Read and Write

Impact provides the write command to save to a file the molecular system
coordinates in several formats. The write and read commands also offer a
simple way of saving a snapshot of the system (coordinates and, if so desired,
velocities) and restoring it afterwards.
The following description applies not only to task minimize but also to
dynamics, and montecarlo, although in some cases (to be discussed below)
not all options would make sense. There are three types of file that can be
used to hold snapshots of the system: PDB (brookhaven or impact format),
Maestro, residue template, restart and trajectory files.
To write a PDB file use the following syntax:

• write pdb [brookhaven | impact | nil] -

name species_name file filename

Impact 4.0 Command Reference Manual 75

Chapter 3: Perform Simulations

Note: only coordinates can be written to a PDB file. To read a PDB file
you must do so inside the create task.
To write a Maestro file use the following syntax:

• write maestro [name spec1 [name spec2]] -

file filename

If the species to be written to the Maestro file are of type ‘auto’ the infor-
mation from the original Maestro file (or as converted from a PDB or SD file)
is preserved in the output of this command. If the species is of type other
than ‘auto’, Impact attempts to generate a valid Maestro file by creating a
type ‘auto’ temporary copy of the species before writing it to the file. If two
species are specified, a temporary species of type ‘auto’ obtained by merging
the two species is written to the file. In absence of species specification the
default is to merge both Impact species in the output file. To read a Maestro
file you must do so inside the create task.
To write a residue template file (see Section A.2 [Residue files], page 217)
use the following syntax:

• write template name spec file filename

where spec is the name of the species to be written and filename the name
of the file to be created. This command is most often used to generate a
residue template file to be used as input for the build newresidue (see Sec-
tion 2.2.1.8 [Newresidue (build)], page 27) command of the CREATE task. De-
spite the name, residue template files can hold the structure of any molecule
not just those of aminoacid residues. Residue template files are in free for-
mat and can be edited to, for instance, manually change the assigned atom
types and partial charges. Caution: write template only works with the
non-default OPLS1999 and OPLS2000 force fields.
The write restart and read restart commands are used to save and re-
store the coordinates (and velocities) of all particles in the system. A restart
file consists of a snapshot of the cartesian coordinates and, optionally, ve-
locities of each atom of the system. When reading or writing restart files
the behavior of Impact depends on the current task unless the files are writ-
ten and read using the external keyword, in which case Impact honors all
requests made on the command line.
• In task minimize only coordinates can be written or read. If the com-

mand line also specifies velocities Impact will not honor the request
unless external format is used, although no error will be generated.

• In task montecarlo only coordinates can be written but both coordi-
nates and velocities can be read.2

• In task dynamics velocities are always written to a restart file, even if
they are not specified on the command line. The user can, however,
choose not to read them back.

In all cases the usage is the same:

2 Though velocities are not very meaningful in this case.

76 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

• [read | write] restart coordinates [and velocities]

[box | nobox | nil] -

[formatted | unformatted | external | nil] -

[real8 | real4 | inte2 | nil] -

file filename

The meaning of the keywords is explained below.
A trajectory file contains a sequence of snapshots of the system (coordinates
and, sometimes, velocities of all atoms). Normally trajectory files are read
using the table subtasks starttrack and stoptrack but they can also be
read wherever a restart file can be read.

• write trajectory coordinates [and velocities] [box | nobox | nil] -

[unformatted | external | nil] -

[real8 | real4 | inte2 | nil] -

file filename -

every number_of_steps

• read restart coordinates [and velocities] [box | nobox | nil] -

[unformatted | external | nil] -

[real8 | real4 | inte2 | nil] -

file filename -

skip to frame_number

Caution: reading a frame (snapshot) from a trajectory file using the last
syntax shown should be done with care, since strange things may happen if
the user mixes the coordinates with the velocities.
formatted
unformatted
external (default for restart and trajectory files) A formatted file is an

ASCII file containing the list of coordinates (and velocities, if
appropriate). The main advantage of these files is that they
are human readable, but they usually occupy too much space.
An unformatted file, on the other hand, is binary and thus
much smaller. The main disadvantage is that files generated
on one machine are usually not readily read on other machines.
This prompted the development of the external way of writing
restart and trajectory files, which offers a compact (since it is bi-
nary), machine-independent representation. This is the default
for trajectory files and it is strongly recommended (unformatted
files may not be supported in the future). As mentioned above,
if the keyword external is specified Impact honors all requests
on the command line.

inte2
real4

real8 (default)
These keywords control the size of the data written to (read
from) a binary restart or trajectory file. When reading an
unformatted file they must be specified, but that is not neces-

Impact 4.0 Command Reference Manual 77

Chapter 3: Perform Simulations

sary when reading an external file since the program can find
this information from the file itself. The keyword inte2 will be
ignored when reading or writing an external file and real4 will
be substituted instead. The sizes are chosen as follows:

real8 Store the data as real*8 numbers. This is the high-
est precision available and uses the most disk space.

real4 Stores the data as real*4 numbers. This halves the
storage requirements and also reduces the precision.

inte2 This option is somewhat more complicated. The
numbers will be scaled by 1000. and stored as
integer*2 numbers. This will leave a maximum
of 5 significant figures and maximum values of
±32.767.

[box | nobox | nil]
Write (or don’t write) the dimensions of the simulation volume
with the coordinates (these dimensions are needed when per-
forming constant pressure simulations). If a constant pressure
simulation is being run, box is the default; otherwise it is nobox.
This option applies to trajectory and restart files.

every number of steps
Determines how often coordinate sets will be written.

skip to frame number
When reading a trajectory as a restart file one can specify which
frame (snapshot) to read. Frame numbers start at 1 and should
not exceed the number of frames that were written to the file.

78 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

3.2 Task Dynamics
The object of task dynamics is to perform a molecular dynamics (MD) sim-
ulation for a system prepared by tasks create and setmodel. Complete
examples of this task are shown in Section C.2.5 [Protein-water MD (ex-
ample)], page 253 and Section C.2.3 [Protein size (example)], page 246. A
typical shorter example is the following:

dynamics

input cntl -

nstep 2000 delt 0.001 relax 0.01 seed 110 -

stop rotations constant temperature byspecies -

nprnt 10 tol 2.0e-7

input target name protein temperature 298.0

input target name solvent1 temperature 298.0

read restart coordinates and velocities formatted file oldrun.xv

run

write trajectory coordinates and velocities every 10 -

external file newrun.xv

quit

Please Note: Dynamics simulations may not give useful results, or may ter-
minate with errors, if the initial structure has steric clashes or other prob-
lems. Even structures that have been minimized with other programs, or
those produced by Maestro’s build panel, may have such problems as mea-
sured with Impact’s force fields. A short Impact minimization task prior to
dynamics is useful for fixing such problems.

3.2.1 Subtask Input

Reads in program control parameters for the MD run.

• input cntl nstep steps [delt time_step]

• input cntl [constant -

[temperature [byspecies] [relax value] | totalenergy] -

[pressure [dvdp value] [density value] | volume]

• input cntl [initialize temperature -

[forspecies (name spec at T_i) for all species | -

at T_i] [seed num]] -

[stop rotations] [nprnt freq)] -

[tol tolerance] [metric value]

• input cntl [statistics [on | off]]

Unless otherwise specified the default is to run MD simulations at con-
stant temperature and volume. This results in coupling the system to
an external heat bath (with a temperature that is independent of the
species). Using the keyword byspecies results in velocity scalings that
are independent for each species. In this case the user should specify
an initial temperature for each species using the forspecies keyword,
and all species should appear on the same (logical) line. Otherwise

Impact 4.0 Command Reference Manual 79

Chapter 3: Perform Simulations

some of the species will end up with the default initial temperature. If
‘constant totalenergy’ is specified instead there will be no scaling.1

Specifying ‘constant pressure’, as opposed to ‘constant volume’, re-
sults in coupling to a pressure bath using the algorithm of Berendsen et
al. (J. Chem. Phys., 81, 3684 (1984)). Molecular center of mass coordi-
nate rescaling is implemented. The distances between molecules change
proportionally to the change in box size and intramolecular distances re-
main unchanged. Note that a "molecule" is defined as the entity created
by a ‘build primary’ command. Center of mass coordinate rescaling is
ineffective for systems composed of a single molecule (systems built with
only one ‘build primary’ command). A solvent species is composed of
as many molecules as created by the ‘build solvent’ command.
Independent of whether the simulation is run at ‘constant
temperature’ or ‘constant totalenergy’ the user can initialize the
temperature of all species (either the same for all or on a per-species
basis) with the keywords ‘initialize temperature’. Caution: by
default the temperature is not initialized since this could result in
overwriting the velocities read from a restart file. Right after a
minimization, the user should initialize the temperatures of all species
to sensible values. The user should not use ‘initialize temperature’
though, if there is an external restart file (with both coordinates and
velocities) read in.
Several parameters can be specified in the ‘input cntl’ line:

nstep Number of MD steps (must be larger than one!).

nprnt Gives the number of steps after which contributions to the
energy will be printed out (5).

delt Gives the time step in picoseconds (0.001).

relax Relaxation time in ps for velocity scaling (if using ‘constant
temperature’) (0.01).

seed Seed to be used to start the random number generator when
initializing the temperature of (any) species.

taup Relaxation time in ps for volume scaling (if using ‘constant
pressure’) (0.01).

dvdp Isothermal compressibility 1/V (dV/dP), in units of atm−1.
The default is the value for water: 4.96 · 10−5 atm−1. This
quantity is needed for constant pressure simulations.

density Effective density (g/cm3) of solute molecules. Needed to
compute long-range corrections to the pressure (1.0).

1 The total energy may actually not be conserved, due to the effects of a sharp cutoff. In
most cases this will lead to an unstable simulation.

80 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

tol Tolerance to be used when applying the constraints in SHAKE
and RATTLE (1.0 · 10−7).

stop rotations
Flag for stopping the center of mass motion. Default is not
to stop the center of mass motion.

statistics on
statistics off

Toggles collection of statistics on the fluctuations of the
different energy terms during the simulation. In earlier ver-
sions this was always on; now it is off by default.

• input target temperature T_f

• input target ([name spec] temperature T_f) repeated for all species

Allows the specification of the final temperature (T f) for the whole
system or by species. The first form should be used only if the scaling
is done on a species-independent basis. If the byspecies keyword was
used, however, the second form must be used and all the species should
appear on the same (logical) line. Multiple ‘input target’ lines would
result in conflicts.
The actual temperature will fluctuate about the desired value. At each
MD step the kinetic energies will be scaled so the temperature will
approach the desired value on a timescale determined by the relax
parameter.
• input target pressure P_f

Reads in the final pressure (P f) of the system. The same comment as
in the previous paragraph applies, mutatis mutandis.

3.2.2 Subtask Run

Performs the actual molecular dynamics run. The temperatures are initial-
ized at this step, not when the values are read from the ‘input cntl’ line.
The user can choose among three different algorithms for the integration of
the equations of motion: the Verlet algorithm, which is the default; and two
based on the reversible RESPA (r-RESPA) of Tuckerman, Berne and Mar-
tyna, J. Chem. Phys., 97 (1992). Currently at most three inner stages are
allowed and the frequency with which the corresponding forces are updated
is controlled by the parameters freqf (fast forces), freqm (medium and slow
forces) and freqs (slow forces). Currently freqm and freqs only have meaning
if the FMM (fast multipole) code is used. On the other hand, freqf can be
used with or without the FMM since it controls only the bonding forces.
If the FMM is used and freqs is present, the forces are separated in three
pieces: those arising from nearby bodies; those arising from bodies in the
first and second neighbors that are not very close, and those coming from
the local expansions. If freqs is not present but freqm is, the second and
third are collected together.

Impact 4.0 Command Reference Manual 81

Chapter 3: Perform Simulations

• run [verlet | rrespa fast freqf [medium freqm [slow freqs]]]

3.2.3 Subtask Plot
• plot [individual | group | superimpose] [delay | postscript] -

file filename

This command is used to plot the energy terms generated during a
dynamics or montecarlo run. It must occur after subtask run.

individual
Plot all individual terms.

group Plot groups of energy terms.

superimpose
Superimpose all energy terms onto one plot.

3.2.4 Subtasks Read and Write

Read or Write a) a restart file containing final coordinates, and velocities
(forces could also be written) or b) a trajectory file (see Section 3.1.7
[Read/write (minimize)], page 75).

3.2.5 Subtask Convert

This subtask is provided to ease the transition to the new, default, external
binary format (see Section 3.1.7 [Read/write (minimize)], page 75).

• convert -

from [unformatted | external] file filename -

to [unformatted | external] file filename -

[real4 | real8 | inte2] [box | nobox] -

[first start last end]

Reads a trajectory file written in one format and writes it out in an-
other. The keywords box, nobox, real8, real4 and inte2 apply only
to the output file and allow the user to specify the corresponding op-
tions differently from the ones used when the input file was written (see
Section 3.1.7 [Read/write (minimize)], page 75). Note that inte2 is the
same as real4 when using the external format.
The parameters start and end allow the user to convert only a portion
of the trajectory file. Since both input and output formats can be the
same this is a handy way of extracting a consecutive sequence of frames.

82 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

3.3 Task Montecarlo
This task performs Monte Carlo simulations on all or parts of a molecule.
This task uses Monte Carlo methods to sample conformational space based
on the potential function chosen in setpotential. An example of the use
of this task is Section C.1.5 [MC Refinement (tutor)], page 237.

3.3.1 Subtask Sample

Select torsions to be included in the Monte Carlo sampling. Without this
subtask no angles will be sampled! This command must come before calc.
Use as in the following, noting that in this one task the keywords fres and
lres are required, and fresidue or lresidue are not acceptable;

• sample alltorsions nseg num-nseg (fres num lres num) num-nseg times [min-

print]

• sample schain nseg num-nseg (fres num lres num) num-nseg times [min-

print]

• sample bbone nseg nseg (type angletype fres num lres num) nseg times -

[minprint]

alltorsions
Sample all torsions or side chains, or backbone torsions.

schain Side chain torsions to be sampled in proteins—all χ in residues
selected will be sampled except those involving rings (such as PHE
to TYR).

bbone Backbone torsions to be sampled (Prolines will never be sam-
pled).

nseg Number of residue ranges to be read in.

type For a protein this keyword can be followed by phi, psi, fsi and
omeg to respectively sample φ, ψ, or φ and ψ together, or ω only.
The keyword all selects all the angles. For DNA type can be
followed by all or bone to sample all torsions or just those that
do not involve the sugar ring, respectively.

minprint Turn off the printing of the actual angles sampled. This should
only be used on well tested runs where montecarlo is used fre-
quently and with the same torsional sampling.

3.3.2 Subtask Params

This command is used to set or change parameters in the Montecarlo run
and must be called before the run subtask. If run is a restart and param-
eters are to be changed, params must be after restart. Caution: changing
parameters in a restart should be done with care, as this can sometimes give
strange results! To change more than one of these parameters, use a separate
params command for each one.

Impact 4.0 Command Reference Manual 83

Chapter 3: Perform Simulations

• params [step | size | freq | seed | temp] value

freq Frequency of steps to print out data.

seed Seed for random number generator.

step Number of steps in Monte Carlo run.

size Initial angle change; this value will be adjusted throughout the
run to keep the acceptance rate between 25–75%.

temp Temperature of the simulation (default value is 300 K).

3.3.3 Subtask Run (or calc)

Signals the beginning of the Monte Carlo run. This command must be called
after the sample and params subtasks have been called in the montecarlo
section.

3.3.4 Subtask Plot

Plot the energy terms generated during a Monte Carlo run. This command
must be used after the subtask run. This is a general subtask, and other
plotting options are available through the standard plotting commands (see
Appendix B [Plot], page 227).

individual
Plots all individual terms.

group Plot groups of energy terms.

superimpose
Superimposes all energy terms onto one plot. Other plot options
are specified as in the main plot task.

delay Save plotting coordinates in a file to be plotted later on another
machine. Without this, a line printer type plot will appear in
the main output file.

For example
plot indiv delay file refine.plot

saves all individual energy terms in a file called refine.plot.

3.3.5 Subtask Save

This command is used to save the current results of a Monte Carlo simu-
lation; If there is an unexpected end of the run, then restart can be used
later. This must be called before run.

• save file fname *

file The name of the saved data (binary) file. See Section 3.3.6
[Restart (montecarlo)], page 85. Note that a * character is re-
quired to signify the end of the file name.

84 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

3.3.6 Subtask Restart
Restart a Monte Carlo simulation that was started and then saved previ-
ously with the save option. Must be called immediately preceding run or
parameters may be over-written. It is used as in

• restart file fname *

where file directs where to find the saved data, and fname must be termi-
nated with a ‘*’ to signify the end of the name.

3.3.7 Subtasks Read and Write

See Section 3.1.7 [Read/write (minimize)], page 75.

Impact 4.0 Command Reference Manual 85

Chapter 3: Perform Simulations

3.4 Task Hybrid Monte Carlo (HMC)
The Hybrid Monte Carlo (HMC) method is often called “bad MD but good
MC”. Even though HMC is regarded as a Monte Carlo method, it uses
Molecular Dynamics to perform the conformation-space search. Thus, in
many respects, HMC’s subtasks can be compared to those for Molecular
Dynamics, as both usually call the same functions. Since molecular dynamics
is only used for generating new conformations, a much larger time step
can usually be used (this is why it is called bad MD), with the Metropolis
criterion determining which moves to accept or reject.

3.4.1 HMC Methodology

The J-Walking and S-Walking methods are also implemented on the basis
of the HMC protocol, and can be turned on by specifying subtasks. Since
HMC performs the same simulation as does constant temperature molecular
dynamics, many input controls for constant temperature MD are also suit-
able for HMC or are very similar for it, as you can see from the example
shown below.

The following is a brief description of the S-walking (Smart Walking) method
proposed by R. Zhou and B. J. Berne.1 The S-Walking method is closely re-
lated to the J-Walking method proposed by Frantz et al.2 Like the J-Walking
method, the S-Walking method runs two walkers, one at the temperature of
interest, the other at a higher temperature that more efficiently generates
ergodic distributions. Instead of sampling from the Boltzmann distribution
of the higher temperature walker as in J-Walking, S-Walking first approx-
imately minimizes the structures being jumped into, and then uses the re-
laxed structures as the trial moves at the low temperature. By jumping into
a relaxed structure, or a local minimum, the jump acceptance ratio increases
dramatically. This makes the protein system easily undergo barrier-crossing
events from one basin to another, thus greatly improving the ergodicity of
the sampling. The method approximately preserves detailed balance pro-
vided the time between jumps is large enough to allow effective sampling of
conformations in each local basin.

Here is a very simple example of a HMC calculation that uses S-Walking
(more detailed examples can be found in Section C.4.4 [S-Walk (example)],
page 309):

1 J. Chem. Phys., 107, 9185 (1997)
2 J. Chem. Phys. 93, 2769 (1990)

86 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

HMC

input cntl mxcyc 10000 nmdmc 5 delt 0.0015 relax 0.01 seed 101 -

nprnt 100 tol 2.0e-7

input cntl swalk cycgap 5000 cycrec 20 minstep 100 -

jtemp 500.0 jrate 0.1

input target temperature 300.0

write trajectory coordinates and velocities every 10 -

external file pentpep.trj

run

write restart coordinates and velocities formatted file pentpep.rst

write pdb brookhaven name pentpep file pentpep_swk.pdb

QUIT

3.4.2 Subtask Input

Reads in program control parameters for the HMC run.
• input cntl mxcyc cycles [nmdmc num] [delt time_step] -

[relax val] [seed num] [stop rotations] [nprnt freq] -

[tol tol] [metric value]

• input cntl [statistics [on | off]]

• input cntl [swalk | jwalk] [cycgap cycles] [cycrec cycles] -

[jtemp temp] [jrate rate] [minstep steps] [metric num]

• input target temperature T_f

HMC samples the conformation space with the canonical ensemble.
Thus the underlying molecular dynamics by default is constant tem-
perature constant volume MD. This results in coupling the system to
an external heat bath with a temperature that is specified by ‘target
temperature’. Note that unlike dynamics, there is no ‘initialize
temperature’ option for HMC. Instead, HMC initializes velocities to a
distribution based on ‘target temperature’ at the beginning of each
HMC step.
Several parameters can be specified in the ‘input cntl’ line:

mxcyc Number of HMC cycles to be performed.

nmdmc Number of MD steps per HMC cycle (5). The total number
of MD steps will be equal to (mxcyc * nmdmc).

nprnt Number of MD steps after which contributions to the energy
will be printed out (5).

delt Time step in picoseconds (0.001).

relax Relaxation time in ps for velocity scaling (if using ‘constant
temperature’) (0.01).

seed Seed to be used to start the random number generator when
initializing the velocities for any species.

tol Tolerance to be used when applying the constraints in SHAKE
and RATTLE (1.0 · 10−7).

Impact 4.0 Command Reference Manual 87

Chapter 3: Perform Simulations

jwalk Turn on the jwalk option. This option performs J-Walking
with other parameters specified by following items. It runs
an extra high-temperature walker for barrier crossing, so
the total MD steps will be doubled.

swalk Turn on the swalk option. This option performs S-Walking
with other parameters specified by following items. It also
runs an extra high-temperature walker for barrier crossing,
so the total MD steps will be doubled. The difference be-
tween swalk and jwalk is that swalk option performs a
rough local minimization for high-temperature conforma-
tions, while the jwalk option does not.

cycgap Number of HMC cycles for the high-temperature walker or
low-temperature walker before they switch (1000). The two
walkers are run in tandem.

cycrec Number of HMC cycles between records written of the
high temperature-walker’s configuration (20), where cyc-
gap/cycrec = number of records stored in file highT.cnf.

jrate Trial jump rate (1.0%).

jtemp Jump-S/Jwalker’s (high-temperature walker) temperature
(500.0 K).

minstep Steepest decent minimization steps in S-walking (100)

metric Parameter for ergodicity analysis (0). metric = 1, perform
ergodic metric calculation; metric = 0, no metric calcula-
tion.

stop rotations
Flag for stopping the center of mass motion. Default is not
to stop the center of mass motion.

statistics on
statistics off

Toggles collection of statistics on the fluctuations of the
different energy terms during the simulation. In earlier ver-
sions this was always on; now it is off by default.

• input target temperature T_f

Allows the specification of the final temperature (T f) for the whole
system. The actual temperature will fluctuate about the desired value.
At each MD step the kinetic energies will be scaled so the temperature
will approach the desired value on a timescale determined by the relax
parameter.

88 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

3.4.3 Subtask Run

Performs the actual molecular dynamics run, as described in the Molecular
Dynamics Run subection (see Section 3.2.2 [Run (dynamics)], page 81). The
temperatures are initialized at this step, not when the values are read from
the ‘input cntl’ line. The user can choose among three different algorithms
for the integration of the equations of motion: the Verlet algorithm, which
is the default; and two based on the reversible RESPA (r-RESPA) of Tuck-
erman, Berne and Martyna, J. Chem. Phys., 97 (1992). Currently at most
three inner stages are allowed and the frequency with which the correspond-
ing forces are updated is controlled by the parameters freqf (fast forces),
freqm (medium and slow forces) and freqs (slow forces). Currently freqm
and freqs only have meaning if the FMM (fast multipole) code is used. On
the other hand, freqf can be used with or without the FMM since it controls
only the bonding forces. If the FMM is used and freqs is present, the forces
are separated in three pieces: those arising from nearby bodies; those arising
from bodies in the first and second neighbors that are not very close, and
those coming from the local expansions. If freqs is not present but freqm is,
the second and third are collected together.

• run [verlet | rrespa fast freqf [medium freqm [slow freqs]]]

3.4.4 Subtask Plot
• plot [individual | group | superimpose] [delay | postscript] -

file filename

This command is used to plot the energy terms generated during a
dynamics, HMC or montecarlo run. It must occur after subtask run.

individual
Plot all individual terms.

group Plot groups of energy terms.

superimpose
Superimpose all energy terms onto one plot.

3.4.5 Subtasks Read and Write

Read or Write a) a restart file containing final coordinates, and velocities
(forces could also be written) or b) a trajectory file (see Section 3.1.7
[Read/write (minimize)], page 75).

3.4.6 Subtask Convert

This subtask is provided to ease the transition to the new, default, external
binary format (see Section 3.1.7 [Read/write (minimize)], page 75).

• convert -

from [unformatted | external] file filename -

to [unformatted | external] file filename -

Impact 4.0 Command Reference Manual 89

Chapter 3: Perform Simulations

[real4 | real8 | inte2] [box | nobox] -

[first start last end]

Reads a trajectory file written in one format and writes it out in an-
other. The keywords box, nobox, real8, real4 and inte2 apply only
to the output file and allow the user to specify the corresponding op-
tions differently from the ones used when the input file was written (see
Section 3.1.7 [Read/write (minimize)], page 75). Note that inte2 is the
same as real4 when using the external format.
The parameters start and end allow the user to convert only a portion
of the trajectory file. Since both input and output formats can be the
same this is a handy way of extracting a consecutive sequence of frames.

90 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

3.5 Task Linear Response Method (Liaison, LRM,
or LIA)

Liaison, embodied in the LRM or LIA task, is Schrödinger’s implementation of
the Linear Response Method (LRM), also called the Linear Interaction Ap-
proximation (LIA), a method of combining molecular mechanics calculations
with experimental data to build a model scoring function for the evaluation
of ligand-protein binding free energies.

3.5.1 Liaison Overview

LRM-type methods were first suggested by Aqvist (J. Aqvist, C. Medina
and J. EA. Samuelsson, Protein Eng. 7, 385-391, 1994; T. Hansson and J.
Aqvist, Protein Eng. 8, 1137-1144, 1995), based upon approximating the
charging integral in the free energy perturbation formula with a mean value
approach in which the integral is represented as half the sum of the values
at the endpoints, namely the free and bound states of the ligand. Since then
they have been pursued by a number of research groups including that of
Jorgensen (D. K. Jones-Hertzog and W. L. Jorgensen, J. Med. Chem., 40,
1539-1549, 1997), who has reported very good results for a number of ligand
binding data sets. From a computational standpoint, this approximation
has a number of highly attractive features:

1. In contrast to free energy perturbation (FEP), where a large number of
intermediate windows must be evaluated, the LIA requires simulations
of only the ligand in solution and the ligand bound to the protein. The
idea is that one views the binding event as a replacement of the aqueous
environment of the ligand with a mixed aqueous/protein environment.

2. Again in contrast to FEP, one can study disparate ligands as long as
they have similar binding modes. FEP allows only very small changes
between ligands to be investigated; the differences in the data sets we
have examined up to this point are much more significant.

3. Only interactions between the ligand and either the protein or the aque-
ous environment enter into the quantities that are accumulated during
the simulation; the ligand-ligand, protein-protein and protein-water in-
teractions are part of the “reference” Hamiltonian and hence are used
to generate configurations in the simulation (via either Monte Carlo or
molecular dynamics) but are not used as descriptors in the resulting
model for the binding free energy (see below). This eliminates a consid-
erable amount of noise and systematic uncertainties in the calculations,
for example arising from different conformations of the protein obtained
from cocrystallized structures of different ligands.

4. The method as implemented by Jorgensen et al. contains three terms
in the empirical formula for the binding energy: electrostatic, van der
Waals, and solvent accesible surface area (SASA):

Impact 4.0 Command Reference Manual 91

Chapter 3: Perform Simulations

∆G = α(〈U b
elec〉 − 〈U f

elec〉) + β(〈U b
vdw〉 − 〈U f

vdw〉) + γ(〈U b
SASA〉 − 〈U f

SASA〉)

〈...〉means ensemble average from a Monte Carlo or Molecular Dynamics
simulation, and all terms are evaluated only for interactions between
ligand and its “environment”. Aqvist et al. used only two terms in
their original work, i.e., electrostatic and van der Waals interaction.
However, Jorgensen et al. found that it is necessary to add one more
term for larger data sets, and the third term was also proposed to be
just a constant term. In our implementation as discussed later, the third
term is based on the cavity energy in the SGB continuum solvent model.

If the linear response approximation was rigorously valid, the coefficient
of the electrostatic term would be 0.5, corresponding to the mean value
approximation to the charging integral. In fact, one can recover a value very
close to this for less complex systems, such as solvation of small molecules in
water. However, some of the steps involved in the binding event, such as the
removal of water from the protein cavity and subsequent introduction of the
ligand, are unlikely to be accurately described by a linear model. Therefore,
in practice, optimization of fitting parameters yields electrostatic coefficients
that are significantly different from the ideal value of 0.5. By allowing this
empirical element, one is sacrificing generality; the method probably requires
that the ligands have similar binding modes, and new parameters must be
developed for each receptor. In return, however, one can obtain a reasonable
level of accuracy (reflected in cross-validation studies as well as the overall
fitting accuracy) with a modest expenditure of CPU time, under assumptions
that are quite reasonable for many structure-based drug design projects.
We have developed an implementation of the LIA, in the context of the
Impact program, using the generalized Born continuum solvation model and
the OPLS-AA force field of Jorgensen and coworkers. To our knowledge, this
is the first commercially available version of the LIA and the first version
of any type to utilize continuum solvation. Key features of the Schrödinger
implementation are as follows:
1. First, we replaced the solvent accessible surface area term in Jorgensen’s

LIA formulation by the cavity term in the continuum solvent model:

∆G = α(〈U b
elec〉 − 〈U f

elec〉) + β(〈U b
vdw〉 − 〈U f

vdw〉) + γ(〈U b
cav〉 − 〈U f

cav〉).

We think it makes sense to use such a term in the context of a continuum
solvent model. Indeed, it is not clear why the solvent accessible surface
area is needed in an explicit solvent model, since waters are explicitly
represented already.

92 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

2. The use of a continuum model provides much more rapid convergence
of the simulations. The statistics on the various interaction terms are
significantly better converged than in an explicit solvent simulation, and
the required CPU time is much smaller.

3. We have implemented an automatic atom typing scheme for the OPLS-
AA force field that assigns charges, van der Waals, and valence parame-
ters with no human intervention. A key feature of OPLS-AA is excellent
reproduction of condensed phase properties, obtained via fitting to liq-
uid state simulations. Over the past years Jorgensen and coworkers have
rapidly extended the functional-group coverage of OPLS-AA to include
a larger number of pharmaceutically relevant species. This work will
be continued and expanded at Schrödinger and at Columbia University
(Prof. Richard Friesner) in collaboration with Professor Jorgensen. We
intend in the coming year to increase both the accuracy and coverage
of OPLS-AA substantially.

4. The Maestro interface to Liaison produces scripts that allow a series of
Liaison jobs to be run automatically. This makes it convenient to use
the method in the context of an industrial structure-based drug design
effort, in which a large number of molecules need to be examined.

Here is a very simple LRM example that uses the SGB continuum solvent
model (more detailed examples can be found in Section C.4.5 [Liaison (ex-
ample)], page 311):

LRM

assign ligand name drug

input cntl average every 10 file lrm_bound.ave

sample dynamics

input cntl nstep 10000 delt 0.001 relax 0.01 nprnt 100 seed 101 -

constant temperature

input target temperature 300.0

run rrespa fast 2

write restart coordinates and velocities formatted file cmpx_lrm.rst

write pdb brookhaven name prot file prot_lrm.pdb

write pdb brookhaven name drug file lig_lrm.pdb

QUIT

3.5.2 Subtask Assign

Specifies the LRM or LIA ligand in the LRM simulation. This ligand can
in fact be any entity; it could be a single ligand, a pair of ligands from a
ternary complex, or even a protein, as long as all the components reside in
a single species.

• assign ligand name spec

name spec determines the LRM ligand. The program thus will calculate and
collect all interactions between this ligand and its “environment” (protein
or water), but not the interactions within ligand itself or the protein (water)

Impact 4.0 Command Reference Manual 93

Chapter 3: Perform Simulations

itself. In the continuum solvent model, this means that we need to separate
the single and pairwise energies in the Generalized Born model into proper
partial contributions to represent the LIA interaction between ligand and
protein.

3.5.3 Subtask Param

Specifies LRM or LIA parameters, i.e., α, β, γ in the LRM simulation.
• param elec val vdw val cavity val

As mentioned above, the current method requires that new parameters be
developed for each receptor, so this option is not actually used at present.
Schrödinger’s Maestro user interface generates scripts, as described below,
that automate the LRM simulations on various ligands with known binding
energies, and perform the requisite data collection. Then the user can run
another script to calculate the LRM parameters and report the goodness
of the fit to the experimental binding energies. Finally, the user can apply
these parameters to predict the binding energies of new systems.

3.5.4 Subtask Input

Reads in program control parameters for the LRM simulation.
• input cntl average every num file filename

This command controls options for collection of the LRM statistics. It speci-
fies how often the average LRM interaction energies are to be calculated and
which file to use to print out the ensemble averages. (Other LRM-specific
options may also be specifiable here in the future.)

every Calculate the LRM ensemble average every num steps.

file Write out the ensemble averages to file filename.

3.5.5 Subtask Sample

Selects a sampling method for the LRM simulation, such as Molecular Dy-
namics or Hybrid Monte Carlo.

• sample [dynamics | HMC]

The commands that follow the choice of sampling method are identical to
those that would be needed if that method were invoked as a standalone task.
This is illustrated in the previous example, where dynamics was chosen as
the sampling method; all commands after dynamics are identical to those
expected for the dynamics task. The following example uses HMC as the
sampling method:

94 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

LRM

assign ligand name drug

input cntl average every 10 file lrm_bound.ave

sample HMC

input cntl mxcyc 10000 nmdmc 5 delt 0.0015 relax 0.01 seed 101 -

nprnt 100 tol 2.0e-7

input cntl swalk cycgap 5000 cycrec 20 minstep 100 -

jtemp 500.0 jrate 0.1

input target temperature 300.0

run

write restart coordinates and velocities formatted file cmpx_lrm.rst

write pdb brookhaven name prot file prot_lrm.pdb

write pdb brookhaven name drug file lig_lrm.pdb

QUIT

3.5.6 Scripts for Liaison simulation and fitting

Because generating fitting data for Liaison typically involves running similar
simulations on a number of different systems (the training set), we recom-
mend setting up these simulations, and the parameter-fitting job based on
their results, from the Maestro user interface. (See the Liaison User Manual
for examples of setting up such jobs.) To set up a Liaison simulation job
from Maestro, it is necessary to provide an overall job name and the struc-
tures that constitute the training set, which may be one receptor and several
ligands. Under the current working directory (CWD) from which you run
Maestro, it sets up a directory with the overall job name (‘fit_lia’ in the
following example), and a subdirectory under that for each ligand structure
in the training set (‘pose1_H15’, etc.):

hal9000% ls -l

total 912

-rw-r--r-- 1 banks glidegrp 119 Jul 20 11:19 bindE.expt

-rwxr-xr-x 1 banks glidegrp 374 Jul 20 11:19 change_sgbparam_fit_lia*

-rwxr-xr-x 1 banks glidegrp 312 Jul 20 11:19 fit_fit_lia*

drwxr-xr-x 7 banks glidegrp 116 Sep 10 10:27 fit_lia/

-rw-r--r-- 1 banks glidegrp 430687 Jul 20 11:19 fit_lia.mae

-rw-r--r-- 1 banks glidegrp 1170 Jul 20 11:19 liafit_fit_lia.out

-rwxr-xr-x 1 banks glidegrp 452 Jul 20 11:19 simulate_fit_lia*

hal9000% ls -l fit_lia

total 64

drwxr-xr-x 2 banks glidegrp 4096 Sep 10 10:27 pose1_H15/

drwxr-xr-x 2 banks glidegrp 4096 Sep 10 10:27 pose2_H16/

drwxr-xr-x 2 banks glidegrp 4096 Sep 10 10:27 pose3_H17/

drwxr-xr-x 2 banks glidegrp 4096 Sep 10 10:27 pose4_H12/

drwxr-xr-x 2 banks glidegrp 4096 Sep 10 10:27 pose5_H11/

Impact 4.0 Command Reference Manual 95

Chapter 3: Perform Simulations

hal9000% ls -l fit_lia/pose1_H15

total 1864

-rw-r--r-- 1 banks glidegrp 1170 Jul 20 11:19 bound.inp

-rw-r--r-- 1 banks glidegrp 799 Jul 20 11:19 free.inp

-rw-r--r-- 1 banks glidegrp 558 Jul 20 11:19 pose1_H15.bound.ave

-rw-r--r-- 1 banks glidegrp 12979 Jul 20 11:19 pose1_H15.bound.log

-rw-r--r-- 1 banks glidegrp 33587 Jul 20 11:19 pose1_H15.bound.out

-rw-r--r-- 1 banks glidegrp 186 Jul 20 11:19 pose1_H15.free.ave

-rw-r--r-- 1 banks glidegrp 12205 Jul 20 11:19 pose1_H15.free.log

-rw-r--r-- 1 banks glidegrp 35752 Jul 20 11:19 pose1_H15.free.out

-rw-r--r-- 1 banks glidegrp 10167 Jul 20 11:19 pose1_H15_lig.mae

-rw-r--r-- 1 banks glidegrp 9059 Jul 20 11:19 pose1_H15_lig_min.mae

-rw-r--r-- 1 banks glidegrp 430687 Jul 20 11:19 pose1_H15_rec.mae

-rw-r--r-- 1 banks glidegrp 363077 Jul 20 11:19 pose1_H15_rec_min.mae

In each of the ligand subdirectories, Maestro sets up simulation jobs for that
ligand alone (‘free.inp’), and the ligand-receptor complex (‘bound.inp’),
whose results give the energy terms in the LIA expression for ∆G above,
for which the α, β, and γ coefficients are then fit to experimental binding
energies for the systems in the training set. The command script simulate_
jobname (in this case simulate_fit_lia) runs the simulations in each direc-
tory (either sequentially, or if the user specifies multiple processors, in paral-
lel on the available processors), and renames the output files by prepending
the name of each ligand, e.g. ‘pose1_H15.bound.log’.
For the parameter-fitting component of Liaison, Maestro sets up the script
fit_jobname, which runs a least-squares fitting program to fit the out-
put of the simulations to experimental data, which it reads from the file
‘bindE.expt’ in this case. The fitting program prints its output to the file
‘liafit_jobname.out’. (Headers, ligand names, and intercolumn spaces are
abridged here to fit on the page.)

Input energy components:

Ligand vdw_f coul_f rxn_f cav_f vdw_b coul_b rxn_b cav_b Expt

1_H15 0.000 0.000 -29.979 3.775 -51.264 -23.280 6.290 1.104 -

9.350

2_H16 0.000 0.000 -30.520 3.941 -51.035 -27.165 1.046 1.095 -

11.190

3_H17 0.000 0.000 -23.622 3.959 -56.821 -26.490 9.024 1.095 -

12.160

4_H12 0.000 0.000 -25.415 3.735 -50.892 -17.000 -6.610 1.093 -

9.930

5_H11 0.000 0.000 -18.047 3.756 -56.033 -16.753 -1.967 1.094 -

11.890

Liaison SVD-fitted parameters: alpha*Dvdw + beta*Delec + gamma*Dcav:

alpha = 0.145880 +- 0.018366

beta = 0.031038 +- 0.004276

gamma = 1.517949 +- 0.383891

Chi-square: 202.172089

96 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

Binding energies fitted by SVD:

Ligand-Name SVD-Fitted Experiment

pose1_H15 -10.005 -9.350

pose2_H16 -10.648 -11.190

pose3_H17 -11.433 -12.160

pose4_H12 -10.795 -9.930

pose5_H11 -11.737 -11.890

RMSD error for binding energies = 0.636

3.5.7 Scripts for Liaison binding energy prediction

After fitting the LRM coefficients to experimental data for the training set,
predicting binding energies for one or more new systems is a simple matter of
running simulations on the new systems (bound and free, as for the training
set) to obtain the required energy terms, which are then multiplied by the fit
coefficients. In a prediction job, the Maestro interface sets up a script to run
the simulations, again called simulate_jobname , in the jobname directory,
where jobname may be different from that for the simulations on the training
set. (If it’s the same, the result will be to overwrite the previous simulate_
jobname script, but there may be advantages to keeping both the training
set and the predicted set under the same jobname directory. Here we use
the job name predict_lia for the prediction run.) Maestro also sets up the
script predict_jobname to calculate the predicted binding energies of one
or more new ligands, using coefficients obtained from the previous fitting
job. The following example is for a single ligand.

hal9000% ls -l

-rwxr-xr-x 1 banks 382 Jul 20 11:19 change_sgbparam_predict_lia*

-rw-r--r-- 1 banks 310 Jul 20 11:19 liapredict_predict_lia.out

drwxr-xr-x 3 banks 54 Sep 10 10:27 predict_lia/

-rw-r--r-- 1 banks 374748 Jul 20 11:19 predict_lia.mae

-rwxr-xr-x 1 banks 498 Jul 20 11:19 predict_predict_lia*

-rwxr-xr-x 1 banks 426 Jul 20 11:19 simulate_predict_lia*

hal9000% ls -l predict_lia

drwxr-xr-x 2 banks 4096 Sep 10 10:27 H06_altered_predict/

hal9000% ls -l predict_lia/H06_altered_predict

-rw-r--r-- 1 banks 558 Jul 20 11:19 H06_altered_predict.bound.ave

-rw-r--r-- 1 banks 13245 Jul 20 11:19 H06_altered_predict.bound.log

-rw-r--r-- 1 banks 33572 Jul 20 11:19 H06_altered_predict.bound.out

-rw-r--r-- 1 banks 186 Jul 20 11:19 H06_altered_predict.free.ave

-rw-r--r-- 1 banks 11883 Jul 20 11:19 H06_altered_predict.free.log

-rw-r--r-- 1 banks 30762 Jul 20 11:19 H06_altered_predict.free.out

-rw-r--r-- 1 banks 374748 Jul 20 11:19 H06_altered_predict_lig.mae

-rw-r--r-- 1 banks 10327 Jul 20 11:19 H06_altered_predict_lig_min.mae

-rw-r--r-- 1 banks 374748 Jul 20 11:19 H06_altered_predict_rec.mae

-rw-r--r-- 1 banks 364939 Jul 20 11:19 H06_altered_predict_rec_min.mae

-rw-r--r-- 1 banks 1228 Jul 20 11:19 bound.inp

-rw-r--r-- 1 banks 819 Jul 20 11:19 free.inp

Impact 4.0 Command Reference Manual 97

Chapter 3: Perform Simulations

The prediction script predict_jobname writes its output to the file
‘liapredict_jobname.out’:

LIA prediction: predict_lia

Input data:

Van der Waals term coefficient (alpha) : 0.14588

Electrostatic term coefficient (beta) : 0.031038

Cavity term coefficient (gamma) : 1.51795

Calculated results:

Ligand-Name Binding Energy (Kcal/mol)

H06_altered_predict -12.780

98 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

3.6 Task Docking (DOCK or GLIDE)
The DOCK task, also called Glide (for Grid-based LIgand Docking with
Energetics), is the heart of Schrödinger’s Glide product. The docking algo-
rithm searches for favorable interactions between a (typically) small ligand
molecule and a (typically) larger receptor molecule, usually a protein. The
ligand and receptor typically occupy separate Impact species, though they
may also be separate molecules in the same species. The ligand must be
a single Impact molecule, while the receptor may include more than one
molecule, e.g. a protein and a cofactor. Because of the relative complexity
of this task, several examples of its use are included in this section, in addi-
tion to the usual meta-examples under each subtask or command. Another
example may be found in Section C.4.8 [Glide (example)], page 318.

3.6.1 Description of the Docking Algorithm

The docking procedure for a given ligand molecule runs through two stages,
which we refer to as rough scoring and grid energy optimization. Each stage
relies on grids representing the receptor binding site, but the grids for one
stage are not the same as for the other. As in other docking programs
such as DOCK (E.C. Meng, B.K. Shoichet and I.D. Kuntz, J. Comput.
Chem. 13, 505, 1992) and Autodock (G.M. Morris, D.S. Goodsell, R.S.
Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, J. Comput.
Chem. 19, 1639, 1998), the grids can be precomputed and stored on disk, so
it is unnecessary to read in the receptor molecule, and perform computations
on it, repeatedly for multiple ligands or multiple conformers of the same
ligand. Using grids also makes computing the ligand-receptor interaction
energy an O(nlig) rather than O(nlig ∗ nprot) process, where nlig is the
number of atoms in the ligand and nprot is the number of atoms in the
receptor.
In a typical project, the user will set up the grids in one Glide run, and
dock ligands in one or more subsequent runs, as described below. It is not
currently possible to set up grids and dock ligands in the same run. (See
“Important Operational Notes” in the Glide Technical Notes.) In all cases,
the user should specify saving the grids to disk whenever calculating them.
In the current version of Glide, there are two possible ways to incorporate
ligand flexibility: include multiple conformers of a given ligand in the input
to Impact, or use the program’s internal conformation generator starting
with a single conformer of a given ligand. We strongly recommend the
latter. It covers conformational space systematically, and by clustering con-
formers that have a common “core,” it runs much faster than docking the
same number of externally generated conformers. In conjunction with in-
ternal conformation generation, Glide also allows ligand torsional flexibility
during the optimization of the ligand-receptor interaction energy, and we
recommend using this feature. Future versions of Glide will allow for recep-
tor flexibility; for now, scaling of the van der Waals radii of receptor atoms

Impact 4.0 Command Reference Manual 99

Chapter 3: Perform Simulations

(also available for ligand atoms) mimics some possible motions of the re-
ceptor, such as “breathing” to fit a larger ligand than the one present in a
particular co-crystallized structure.
In addition to generating or processing multiple conformations of a given
molecule, Glide can also dock, and compare the predicted binding affinities
of, multiple ligand molecules in a single Impact run, using a loop in the input
scripting language (DICE). In the case of externally generated conformers,
the same loop can run over a list of input structures that includes both
different molecules and different conformers of each, using Impact’s build
primary check syntax to determine which is which. (The input structures
for internal conformation generation can in principle also include multiple
conformers of the same ligand, but there is no reason to do so, and we do
not recommend it.)
The first stage of the algorithm, known as screening or rough scoring, mea-
sures the geometric “fit” between the ligand and receptor molecules, and ap-
proximations to specific interactions between them such as hydrogen bonds.
The grids for the rough-scoring stage contain values of a rough score function
representing how favorable or unfavorable it would be to place ligand atoms
of given general types (e.g. polar hydrogens, hydrogen bond acceptors, hy-
drophobic heavy atoms) in given elementary cubes of the grid. These grids
have a constant spacing, which defaults to 1 Å. The rough score for a given
pose (position and orientation) of the ligand relative to the receptor is sim-
ply the sum of the appropriate grid scores for each of its atoms. By analogy
with energy, favorable scores are negative, and the lower (more negative) the
better.
The screening stage is actually a hierarchical series of filters that drastically
narrow down the set of poses that are considered candidates for docking.
A given pose is defined by three Cartesian coordinates of the ligand center,
and three Euler angles. The ligand center is taken to be the midpoint of the
diameter, which in turn is taken to be the longest line segment connecting
two ligand atoms. Although some of the commands in the docking task use
the abbreviation cm in keywords to refer to this point, this definition is very
different from the centroid or “center of mass” of the ligand atom positions.
Note also that it may be far from the actual position of any ligand atom. (In
fact, if the ligand “wraps around” a convex portion of the receptor surface,
the ligand center may be inside the receptor.) The Cartesian coordinates
of the center position are defined relative to the origin of coordinates in the
receptor coordinate file. The Euler angles ψ and θ are defined relative to an
orientation in which the ligand diameter points along the z-axis; the φ angle
(rotation of the ligand about its diameter) is taken to be zero in the input
coordinates of the ligand. This biases one of the six coordinates in favor of
its input value, but we have not found this to be a problem even when the
input is the “correct answer”, e.g., a co-crystallized ligand-receptor complex.
It is also possible to choose the grid points to include the ligand center

100 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

coordinates in the input, which introduces additional bias. The ligand poses
that constitute the search space for the screening step correspond to discrete
values of these six coordinates. The ligand center is placed at selected points
on the rough-score grid, with the default being every other point. The ψ and
θ angles are taken from the polar coordinates of a set of points uniformly
distributed on the unit sphere (by default, a set of 302 such points from the
file ‘grid.pts’), and φ is distributed evenly between 0 and 360 degrees, with
the default being 25 values at intervals of 14.4 degrees.
Early filters in the screening stage are purely geometric, weeding out sites
for the ligand center that have no chance of being good docking positions,
because they are too far from the receptor or have no chance of shape com-
plementarity. The later filters involve evaluating the rough-score function on
subsets of the ligand atoms, such as those near the diameter (whose scores
should be independent of φ, so ruling them out for one value of φ kills 25
poses based on as few as 2 ligand atoms), or hydrogen-bonding atoms (or
others expected to make major contributions to favorable scores, so that if
the score is not favorable for the subset, there’s no point in evaluating it for
the rest of the ligand). Effective application of the filters can rapidly reduce
the number of poses to be considered from hundreds of thousands or millions
to a few dozen (or less), before evaluating the full rough-score function on
all the ligand atoms in any pose.
By default, and by our recommendation, the rough-scoring function is de-
fined on a 1 Å grid. In the interest of execution speed, the default sites
for the ligand center occupy a 2 Å grid consisting of alternating points of
the rough-score grid. The default rough-score function is based on count-
ing receptor atoms of various types within certain distances of grid points,
and thus has a step-function character, and can vary considerably from one
grid point to the next. Therefore a pose that gets an unfavorable score may
be very close in space to one that would get a favorable score, and possibly
would minimize to a good docked configuration. If the favorable score occurs
for a pose with the ligand center on a skipped grid point, it might never be
found. This is particularly likely for receptors with tight binding pockets.
To address this potential problem, Glide allows two enhancements of the
rough-score function, which we call greedy scoring and pose refinement.
Both involve examining scores at grid points surrounding the current po-
sitions of ligand atoms, but avoid the considerable expense of moving every
atom of every pose through a 3x3x3 set of neighboring points.
Greedy scoring involves setting up alternative rough-score grids, which at
each grid point incorporate some “influence” of the most favorable score in
the 3x3x3 neighborhood of the central grid point. To construct a “greedy
grid” given the original rough-score grid, the algorithm first finds the most
favorable (lowest or most negative) score in the 3x3x3 neighborhood. The
value stored in the greedy grid at the given grid point is then a linear com-
bination of the original grid value and the best neighboring one: greedy = x

Impact 4.0 Command Reference Manual 101

Chapter 3: Perform Simulations

* best + (1−x) * original. The default is x = 0.33, but the user may specify
any value between 0 (the same as non-greedy scoring) and 1, inclusive.
Pose refinement is a method for evaluating the rough-scores of selected poses
on a finer translational grid than the default. The refinement step takes
each pose that passed all the screening tests, and moves the ligand center
to neighboring grid points. The default step size for these moves is one grid
point (1 Å), which with the default spacing of ligand center sites means that
all the poses it covers other than the central one were skipped in the original
search. If any of these “refined” poses gets a better score than the original
(central) one, the algorithm passes the best such pose on to subsequent steps,
instead of the central one.
Greedy scoring adds computational overhead for reading (and the first time,
computing and writing) the greedy grid, and also, in our tests, about 10–20%
to the CPU time for screening poses of a given conformation (presumably
because more poses pass some of the filters). Pose refinement adds a negli-
gible amount of time to a multiple-conformation or multiple-ligand run, and
tends to decrease the number of poses that need to be passed to minimiza-
tion. Because they significantly enhance the likelihood of finding good poses,
we recommend using both features.
In a run with multiple externally-generated conformations of a given ligand,
the program executes most efficiently (in both time and memory use) if it
performs the (greedy) rough-score calculation for all the conformers first,
keeps some specified total number of best poses over all the conformers, and
then proceeds to pose refinement (and subsequent steps) only on those best
overall poses of the given ligand. For internal conformation generation, the
rough-scoring algorithm treats all the conformers for a given input ligand
in tandem, so it automatically does pose refinement only on the best poses
over all conformers.
The second stage of the docking algorithm begins with evaluation and min-
imization of a grid approximation to the nonbonded interaction energy be-
tween the ligand and the receptor. The grids store the values of the electro-
static potential due to the receptor atoms (with a constant or linear dielec-
tric, at user option), and the attractive and repulsive parts of the Lennard-
Jones energy. The docking algorithm is implemented only for the OPLS-AA
force field. Attempting to use it with a different force field will result in an
error exit from Impact.
The energy values are defined on an adaptive grid, with a finer spacing close
to the receptor for accuracy where the potential energy is changing rapidly,
and coarser far from the receptor to save time and space where the potential
varies slowly (and contributes less to the total in any case). The default for
the finest grid spacing is 0.4 Å, increasing to 3.2 Å in three steps. At user
option, the grid energy also incorporates smoothing functions that eliminate
the singularity in the potential energy at zero distance, and thus soften
the hard walls that could otherwise trap the algorithm in local minima. We

102 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

recommend starting the grid-energy minimization on the smoothed potential
surface, and annealing to the full OPLS-AA grid energy. To accomplish this,
include the subtask smooth anneal 2 in the DOCK task.
The energy evaluations and minimizations use a continuous function for the
energy, obtained by linear interpolation among the values at the corners of
the cube of grid points surrounding each ligand atom position. The position
and orientation coordinates of the ligand are varied continuously during the
minimization. With Glide’s internal conformation generation feature, we
also provide, and recommend, the option of varying ligand dihedral angles
during the minimization.
Glide performs its calculations in the context of two concentric rectangular
boxes, representing different aspects of the receptor active site. The bound-
ing box (or “ligand center box”) delimits the space in which the ligand center
(as defined above) can move. The size of this box determines the size of the
space that the algorithm explores, and thus the amount of computer time
(and to some extent memory) it takes to execute, so to optimize perfor-
mance, it should be as small as the user’s knowledge of the binding site will
allow. Around this bounding box, the enclosing box is the space in which
Glide defines and calculates the grid values for the rough-score and energy
functions. The algorithm rejects a candidate site for the ligand center if
any conformation and pose of the ligand, with its center at that site, would
have any atom outside the enclosing box. Therefore it is important to make
the enclosing box large enough relative to the bounding box so that the lig-
and will fit inside it at all likely sites for its center. Memory restrictions,
unfortunately, limit the size of the enclosing box to 50 Å on a side.
The location and dimensions of the bounding and enclosing boxes are either
calculated from the coordinates of the receptor atoms in residues that the
user specifies as active, taken directly from user specifications via the box
keyword in the receptor and/or screen subtasks, or read from grid files
previously stored to disk.

3.6.2 Example 1: Set up grids

The following example sets up grids based on the receptor in the co-
crystallized thrombin-inhibitor complex contained in PDB entry 1ETS. Sub-
sequent examples dock ligands to this receptor, as represented by these grids.
In the text accompanying these examples, we briefly explain the subtasks of
the DOCK task. In later sections devoted to each subtask, we provide more
detailed descriptions, and information about overriding defaults for param-
eters or options not shown here. It is important to note that all of the
subtasks except confgen, simil, and run simply set up the specifications
and parameters for the docking run; except for confgen, which immediately
generates conformations, and simil, which immediately generates or reads
similarity weights, Impact does not perform any docking calculations until
it encounters run. Thus every invocation of the DOCK task must end with

Impact 4.0 Command Reference Manual 103

Chapter 3: Perform Simulations

the run subtask. Note also that every subtask of this task occupies a single
logical line of the Impact input file. Thus it is crucial to include the hyphens
to indicate continuation of the command (subtask) on the next physical
line. Furthermore, it is important to remember that each physical line of
the Impact input file is truncated after 132 characters. For this reason, all
file names in the examples shown here are on separate physical lines (with
hyphens for continuation as needed). Users must insure that all their file
pathnames (including directories) are short enough to fit in this limit, which
typically means 128 or 130 characters in order to leave room for quotation
marks and/or hyphens. The Maestro user interface will refuse to write an
Impact input file, or start the corresponding job, if the user specifies a path-
name that is too long. We recommend that users who have complicated
directory structures should either run Impact in directories close to where
their files are located, or if this is not practical, use such Unix system fea-
tures as symbolic links or environment variables to shorten the names to be
written to the Impact input file.
It will be noted that unlike most Impact input files, none of the examples
in this section contains a setmodel task. This is because Glide computes
energies differently from other tasks such as minimize and dynamics. It
does so by precomputing receptor grids using the OPLS-AA force field, and
reading (and interpolating) energies from them for ligand atoms, rather than
looping over atom pairs. For this reason, this task does not require setmodel
to specify features and parameters of the energy function.

104 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

write file "1ets_single_grid.out" -

title "1ets_single_grid" *

CREATE

build primary name recep type auto -

read maestro file -

"1ets_single_grid.mae" -

tag REC_

build types name recep

QUIT

DOCK

smooth anneal 2

receptor name recep -

writef -

"1ets_single_grid" -

protvdwscale factor 0.900000 ccut 0.250000 -

box center read xcent -37.510494 ycent -28.946030 zcent 44.411289 -

boxxrange 27.346889 boxyrange 27.346889 boxzrange 27.346889 -

actxrange 27.346889 actyrange 27.346889 actzrange 27.346889

screen greedy -

box center read xcent -37.510494 ycent -28.946030 zcent 44.411289 -

ligxrange 12.000000 ligyrange 12.000000 ligzrange 12.000000 -

writescreen -

"1ets_single_grid.save" -

writegreed -

"1ets_single_grid_greedy.save"

parameter clean

final glidescore

run

QUIT

END

smooth Indicates that the calculation of the energy grids should incor-
porate short-distance smoothing functions. anneal 2 indicates
that the grids should include two different potential-energy sur-
faces, one with smoothing and one without. In a DOCK task to do
grid-energy optimization, smooth anneal 2 means that the op-
timization should start on the smoothed surface and end on the
unsmoothed one. Alternatively, a subsequent DOCK task could
include smooth anneal 1 to use only the smoothed surface, or
omit the smooth subtask in order to use only the unsmoothed
surface; but we strongly recommend using smooth anneal 2 in
all cases.

receptor Specifies the receptor molecule(s) and its active site.
name recep

Indicates that the receptor is in the Impact species
designated recep in the preceding CREATE task. If

Impact 4.0 Command Reference Manual 105

Chapter 3: Perform Simulations

this species contained more than one molecule, then
by default the receptor would include all molecules
in the species; specifying mole mol in this subtask
would restrict the receptor to that single molecule.

writef 1ets_single_grid
Indicates that the energy grids will be writ-
ten to files whose names are built from
the base 1ets_single_grid. Specifically,
‘1ets_single_grid.grd’ will contain struc-
tural information about the adaptive grid
itself (size and coordinates of each grid
box), ‘1ets_single_grid_vdw.fld’ will
contain the Lennard-Jones energy grid,
‘1ets_single_grid_coul.fld’ will contain the
Coulomb potential with a dielectric constant of 1,
and ‘1ets_single_grid_coul2.fld’ will contain
the Coulomb potential with a distance-dependent
dielectric of 1 ∗ r. In addition, Impact will
write the receptor structure to a Maestro format
file, ‘1ets_single_grid_recep.mae’, for use in
subsequent Glide jobs. (To compute and write just
one of the Coulomb files and not the other, use
the keyword writecdie for the constant dielectric
or writerdie for the r-dependent dielectric.
writerdie overrides writecdie, so if you specify
both, only the r-dielectric will be computed and
written. To specify a dielectric other than 1 or 1∗r,
use the dielco keyword in the minimize subtask.)
NOTE: The files read and written by Glide can be
very large (tens of megabytes). To save space on
user disks, and also to save time (network latency)
in environments where the user disk is on a server
other than the local CPU, we recommend reading
and writing these files on local “scratch” disks
while running Impact, and transferring them to
more “permanent” locations separately.

protvdwscale
Specifies a scale factor (factor) for the van der
Waals radii of nonpolar receptor atoms. All atoms
whose partial charge (absolute value) is less than
ccut are considered nonpolar for this purpose.
Specifying factor < 1.0, by effectively making
receptor atoms seem smaller to ligands, is a way
of letting the receptor “breathe” to accommodate

106 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

larger ligands than the one that happened to be in
the cocrystalized complex from which the receptor
structure was taken. Omitting this keyword will
result in no scaling (equivalent to factor 1.0), but
we recommend using some scaling factor such as
0.9 (which the Maestro interface writes to input
files). See the Glide Technical Notes for further
discussion of vdW scaling factors.

box Specifies the rectangular (in this case cubic) box
in which the rough-score and energy grids are
defined. (This is sometimes called the enclosing
box). center read indicates that the coordinates
(in Angstroms) of the center of the box are given
by the following xcent val ycent val zcent val
keyword-value pairs. boxxrange val, etc., give the
lengths (in Angstroms) of the box edges, which
are always parallel to the coordinate axes. The
rough-scoring algorithm rejects a ligand center
site if any orientation of the ligand at that site
would have any atoms outside the grid box, so it
is important to make boxxrange large enough so
as not to exclude any ligand positions that may
be desirable with some orientations of the ligand
but outside the box with others. If actxrange,
etc., are specified, they indicate that any residues
with any atoms in a box of that size (and the
given center) are counted as contributing to the
receptor surface, a set of points on the van der
Waals surface of the specified atoms, which is
used to determine distances of grid points or
boxes from the receptor. We strongly recommend
actxrange = boxxrange, etc., but problems
with the surface-generation algorithm require
actxrange, etc., no greater than 50.0. In such cases
it is acceptable to use boxxrange > actxrange,
etc., but in fact boxxrange > 50.0 is probably not
necessary except for unusually large ligands or
broad binding regions.

screen Requests the rough-score screening phase of the calculation (in
this case, just setting up the rough-score grids), and specifies
parameters for its performance.

greedy Use the greedy-scoring algorithm.

Impact 4.0 Command Reference Manual 107

Chapter 3: Perform Simulations

box Specifies the box in which the ligand center is
moved. (Sometimes called the bounding box.) As
in the receptor subtask, center read indicates
that the coordinates of the box center are to be
read from the following specification. In order to
leave equal space for ligand atoms on all sides of
the bounding box, its center should be the same
as that of the “enclosing box” specified in the
receptor subtask; but for historical reasons, Im-
pact will accept specification of different centers for
the two boxes. ligxrange 12.0 ligyrange 12.0
ligzrange 12.0 indicates that the ligand center
should move in a box of dimensions 12 Å on a side
(i.e., 6 Å in each positive and negative direction from
the center of the box).

writescreen
Write the rough-score grids to the indicated file.

writegreed
Write the greedy-score grids to the indicated file.

parameter
This subtask specifies various general parameters and conditions
for running the DOCK task. clean tells Impact to delete various
dynamically-allocated arrays after the task is completed. If there
were subsequent DOCK tasks in this job, they would need the data
stored in those arrays, so clean would not appear here.

final Specifies the “final” scoring function that Glide is to use for rank-
ing ligands. glidescore indicates Schrödinger’s proprietary
GlideScore (tm) scoring function, adapted from the ChemScore
function found in the literature.1 noglidescore would indicate
using just the minimized grid energy (Coulomb + vdW), which in
general is inadequate for comparing different ligand molecules.
The final glidescore subtask is needed here, even though this
task does not dock any ligands, because GlideScore requires in-
formation about the receptor molecule that may not be available
in the actual docking task. Glide writes this information to a
file called basename.csc, where basename is the name specified
with receptor writef, in this case 1ets_single_grid.

run

Run the calculation. The output consists of the grid and
receptor data files, for use in subsequent docking tasks or

1 Eldridge et al. J. Comput. Aided Mol. Design, 11 p. 425–445, 1997

108 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

jobs. In this case, they will be ‘1ets_single_grid.grd’,
‘1ets_single_coul.fld’, ‘1ets_single_grid_coul2.fld’,
‘1ets_single_grid_vdw.fld’, ‘1ets_single_grid.save’,
‘1ets_single_grid_greedy.save’, ‘1ets_single_grid_recep.mae’
(receptor data for use by the report subtask in a subsequent
job or DOCK task), and ‘1ets_single_grid.csc’. The ‘.grd’
and ‘.fld’ files are binary, the rest are ASCII.

3.6.3 Example 2: Single Ligand, Single Conformation

The following example uses the receptor data and grid files that the previous
one wrote, to dock a single ligand, which happens to be the cocrystallized
ligand from the same “1ets” thrombin-inhibitor complex as the receptor.
This example shows rigid docking of a single conformation of the ligand. The
next (multi-ligand) example will show internal conformation generation, and
torsional flexibility in the energy optimization stage.
This example contains four different DOCK tasks, for different stages of the
calculation. Some of these could be combined for this particular run, but are
separated either because that’s the way they would appear in a multi-ligand
run (some within a WHILE loop, others outside it), or in order to illustrate
different options for the commands included in the DOCK task.

write file "1ets_single_dock.out" -

title "1ets_single_dock" *

DOCK

smooth anneal 2

receptor rdiel readf -

"1ets_single_grid"

screen readscreen -

"1ets_single_grid.save" -

greedy readgreed -

"1ets_single_grid_greedy.save" -

maxkeep 1000 scorecut 100.000000

ligand multiple maxat 100 maxrot 15 -

ligvdwscale factor 0.800000 ccut 0.150000

parameter setup save maxconf 1

final glidescore

report setup by glidescore nreport 500 -

maxperlig 1 rmspose 0.500000 delpose 1.300000

run

QUIT

CREATE

build primary name lig type auto read maestro file -

"1ets_single_dock.mae" -

tag LIG_ gotostruct 1

build types name lig

QUIT

Impact 4.0 Command Reference Manual 109

Chapter 3: Perform Simulations

DOCK

ligand name lig

screen

parameter save

run

QUIT

DOCK

smooth anneal 2

ligand keep

screen noscore refine maxref 100

parameter save

final glidescore read -

"1ets_single_grid.csc"

minimize itmax 100 dielco 2.000000

scoring ecvdw -25.000000 hbfilt -0.700000 metalfilt 0.000000 -

hbpenal 3.000000

report collect -

rmspose 0.500000 delpose 1.300000

run

QUIT

DOCK

parameter clean final

report -

rmspose 0.500000 delpose 1.300000 write filename -

"1ets_single_dock"

run

QUIT

END

The first DOCK task above (sometimes called the setup task) is somewhat
similar to the one in the previous example, except that it reads rather than
writes files, and that it indicates (through the ligand subtask) that one or
more ligand structures are to be docked in this job.

receptor

The readf keyword indicates reading energy grids from
files with the base name given, which in this case are the
ones written in the previous example. rdiel means use the
Coulomb potential computed with the r-dielectric (and stored
in ‘1ets_single_grid_coul2.fld’) for all energy calculations.
Since everything is read from files, no other information about
the receptor (active site, box size, etc.) is needed here.

ligand In subsequent DOCK tasks in this job, this subtask gives informa-
tion about the ligand(s) to be docked. In this “setup” task, how-
ever, it simply indicates that there will be ligands, so that Glide
can set up arrays to hold them. Even though there is only one

110 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

ligand in this case, the multiple keyword must precede maxat
and maxrot, which give the maximum number of atoms and ro-
tatable bonds allowed in any ligand molecule in the current job.
If we were indeed looping over multiple ligands, any one that
exceeded these limits would be skipped. In addition, maxat is
used in allocating storage for the ligand atom coordinates. The
ligvdwscale keyword invokes scaling of the ligand vdW radii
used in energy calculations, similar to protvdwscale above. As
for the protein, omitting this keyword results in setting factor
1.0 (no scaling), but we recommend using a scale factor < 1.0,
and the Maestro interface writes factor 0.8, as shown. Again,
see the Glide Technical Notes for further discussion.

parameter
The setup keyword indicates that no actual calculations are to
be done in this invocation of the task. Instead, the receptor and
ligand data are simply read in and stored in dynamically allo-
cated arrays. (The sizes of most of these arrays are read from
the same grid files that contain their contents.) The save key-
word indicates that these arrays should be retained in memory
for use by subsequent invocations of the task. The maxconf key-
word gives the dimension of dynamically allocated arrays that,
in general, store information for multiple ligands or (externally
generated) conformations. In this case, maxconf 1 indicates a
single ligand structure.

screen As with readf above, readscreen and readgreed here mean
read the rough-score grids from the indicated files, and we don’t
need a box specification because it’s in the same files. The
following additional parameters give details of the rough-score
screening task to follow.

maxkeep Indicates the maximum number of ligand poses to
be passed to the energy minimization. The number
actually kept may be less than this, because fewer
poses pass the various rough-score filters.

scorecut Rough-score window for passing poses to
grid-energy optimization. A pose survives if its
rough-score is within scorecut of the best pose
accumulated so far.

report Gives instructions for the “reporting” (output) of docked ligand
poses (A pose is the structure of a single conformation of a
single ligand, in a single position and orientation relative to the
receptor). The setup task requires some information about what
is to be reported and how.

Impact 4.0 Command Reference Manual 111

Chapter 3: Perform Simulations

setup Indicates that we’re specifying the reporting func-
tion here. Of course we can’t actually collect data
for the report (much less write it to output files) un-
til we’ve actually docked the ligands. But we need
to allocate space for the report data, etc.

by glidescore
Indicates that the poses to be reported will be sorted
in order of the GlideScore scoring function.

nreport The maximum number of poses to report. (The
actual number may be smaller because fewer pass
all screening or scoring tests, or because of the
maxperlig keyword.

maxperlig
The maximum number of poses to report for any
given ligand molecule. maxperlig 1 is particularly
useful for rapid screening of large databases, produc-
ing one pose for each of the nreport best-scoring lig-
ands, which can then be subjected to more detailed
calculations.

rmspose
delpose The rough-score and energy-optimization stages of

a Glide may generate poses for a given ligand that
are similar to each other. In order to avoid dupli-
cation in the report, these keyword-value pairs in-
dicate that two poses of the same ligand are to be
considered distinct (and thus both reported if they
otherwise qualify) only if the RMS deviation of their
atomic positions exceeds the rmspose value, or the
maximum deviation for any atom exceeds delpose.
These keyword-value pairs must appear in every oc-
curence of the report subtask in a given Glide input
file.

The second DOCK task above runs the rough-score screening (except for pose
refinement). Glide knows that it should do this (rather than just allocate
arrays) because there is no setup keyword in the parameter subtask.

ligand name lig
Copy the indicated Impact species into the Glide ligand arrays.

screen Run the rough-score screening using the parameters and infor-
mation specified in the previous DOCK task.

The third DOCK task runs pose refinement and grid-energy optimization.

112 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

smooth anneal 2
Needed here to tell Glide to use both the smoothed and “hard”
potential energy surfaces in the actual minimization. It’s possi-
ble to use smooth anneal 2 in the first task in order to calculate
or read both surfaces, but smooth anneal 1 here to use only the
smoothed one, or leave out the smooth subtask here to use only
the hard surface.

ligand keep
Continue to run calculations on the ligand structure used in the
previous DOCK task, rather than reading in a new one.

screen

noscore Don’t do the whole rough-score process here, be-
cause we did it in a previous task.

refine Use pose refinement.

maxref Maximum number of poses to keep after pose refine-
ment.

minimize Minimize the Coulomb+vdW interaction energy (interpolated on
the grids) for each ligand pose that survives through the rough-
score and refinement steps.

itmax Maximum number of conjugate-gradient iterations

dielco Dielectric coefficient. If cdiel appears in the
receptor subtask above, this is the dielectric
constant. If rdiel, the dielectric is this num-
ber multiplied by the interatomic distance in
Angstroms.

scoring Various filters for keeping poses after energy minimization.

ecvdw Reject any pose whose minimized Coul+vdW energy
is greater (in this case, less negative) than this num-
ber.

hbfilt Reject any pose for which the hydrogen-bond con-
tribution to GlideScore is greater than this number.

metalfilt
Reject any pose for which the metal-binding contri-
bution to GlideScore is greater than this number

hbpenal Assign this penalty in GlideScore for each buried
polar interaction.

report collect
After minimization, and in this case GlideScore evaluation, col-
lect data on top poses for final output. For a single ligand, this

Impact 4.0 Command Reference Manual 113

Chapter 3: Perform Simulations

could be combined with the report write subtask in the next
task. But for a loop over multiple ligands, collection is done
inside the loop for each ligand, and final output is done once at
the end of the job, outside the loop.

The fourth DOCK task writes the final output.

parameter clean final
Delete dynamically allocated arrays at the end of the task. The
final keyword insures that the Glide report function is executed
even if the last ligand’s structure was problematic.

report ... write filename ...
Write the best poses (up to nreport of them, but subject to
maxperlig and survival through all scoring filters) to the output
files. For filename base, write the receptor structure and the
ligand pose structures to base pv.mae, and a summary of the
poses and their scores to base.rept. The user can view the poses
on screen, in conjunction with the receptor, by using the Glide
Pose Viewer, available from the Maestro “Analysis” menu.

3.6.4 Example 3: Multiple Ligands, Flexible Docking

The above example treats a single conformation of a single ligand, to find the
most favorable pose for docking to the given receptor. Probably the more
common use of Glide is to determine which of a number of conformations,
or which ligand of a number of candidates, has the most favorable interac-
tion with the receptor. The DOCK task can be invoked repeatedly to handle
multiple input ligand structures, as in the loop shown below using the DICE
scripting language. (See Chapter 5 [Advanced Input Scripts], page 183 for
details of DICE.) We recommend using a loop as shown here, over multiple
ligands in a single file (Maestro or MDL SD format), with each structure a
different ligand, and using Impact’s internal conformation generator (sub-
task confgen) and torsional flexibility during grid-energy optimization (flex
keyword in minimize subtask) to sample the conformational space of each
ligand in turn.
After the example, we describe the ways in which this example differs from
the single-structure example above.

write file "1ets_example_mult.out" -

title "1ets_example_mult" *

PUT 0 INTO ’buildcheck’

PUT 1 INTO ’startlig’

PUT 0 INTO ’endlig’

PUT -1 INTO ’strucseq’

DOCK

114 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

smooth anneal 2

ligand multiple maxat 100 maxrot 15 -

ligvdwscale factor 1.000000 ccut 0.150000

receptor rdiel readf -

"1ets_single_grid"

screen readscreen -

"1ets_single_grid.save" -

greedy readgreed -

"1ets_single_grid_greedy.save" -

maxkeep 5000 scorecut 100.000000

parameter setup save maxconf 1000

final glidescore

report setup by glidescore nreport 500 -

external file -

"1ets_example_mult.ext" -

maxperlig 1 rmspose 0.500000 delpose 1.300000

run

QUIT

CREATE

build primary name lig type auto -

read sd file -

"many.mol" -

gotostruct 1

build types name lig

QUIT

DOCK

ligand reference name lig

screen noscore

parameter save

run

QUIT

PUT ’startlig’ INTO ’strucseq’

CREATE

build primary check name lig type auto -

read sd file -

"many.mol" -

gotostruct ’startlig’

build types name lig

QUIT

IF ’buildcheck’ LT 0

IF ’buildcheck’ EQ -1

PUT -

$"END OF LIGAND FILE:"$ -

INTO ’outmsg’

ENDIF

IF ’buildcheck’ EQ -2

PUT -

Impact 4.0 Command Reference Manual 115

Chapter 3: Perform Simulations

$"ERROR READING LIGAND FILE:"$ -

INTO ’outmsg’

ENDIF

SHOW ’outmsg’

PUT -

$"many.mol"$ -

INTO ’filemsg’

SHOW ’filemsg’

PUT $"No ligands read; aborting."$ INTO ’outmsg’

SHOW ’outmsg’

GOTO ABORT

ENDIF

PUT ’startlig’ INTO ’i’

WHILE (’endlig’ LT 1 OR ’i’ LE ’endlig’)

DOCK

ligand name lig

screen

parameter save

confgen name lig -

ecut 12.000000

run

QUIT

DOCK

smooth anneal 2

ligand keep

screen noscore refine maxref 400

parameter save

final glidescore read -

"1ets_single_grid.csc"

minimize flex itmax 100 dielco 2.000000

scoring ecvdw -25.000000 hbfilt -0.700000 metalfilt 0.000000 -

hbpenal 3.000000

report collect -

rmspose 0.500000 delpose 1.300000

run

QUIT

PUT ’i’ + 1 INTO ’strucseq’

CREATE

build primary check name lig type auto -

read sd file -

"many.mol" -

nextstruct

build types name lig

QUIT

IF ’buildcheck’ LT 0

IF ’buildcheck’ EQ -1

116 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

PUT -

$"END OF LIGAND FILE:"$ -

INTO ’outmsg’

ENDIF

IF ’buildcheck’ EQ -2

PUT -

$"ERROR READING LIGAND FILE:"$ -

INTO ’outmsg’

ENDIF

SHOW ’outmsg’

PUT -

$"many.mol"$ -

INTO ’filemsg’

SHOW ’filemsg’

PUT $"Proceeding with final processing of ligands."$ INTO ’outmsg’

SHOW ’outmsg’

GOTO BREAK

ENDIF

PUT ’i’ + 1 INTO ’i’

ENDWHILE

:BREAK

DOCK

parameter clean final

report -

rmspose 0.500000 delpose 1.300000 write filename -

"1ets_example_mult"

run

QUIT

:ABORT

END

The first thing to notice about this example is the initialization of four DICE
variables near the top. Of these, ’buildcheck’ is set in the Impact code
(as a result of the build primary check command), and ’strucseq’ is read
by Glide to determine a sequential ligand number that it both uses in its
internal bookkeeping and writes to output files. NOTE: the ’strucseq’ vari-
able must be present, and incremented as in PUT ’i’ + 1 INTO ’strucseq’
above, in any Glide job that docks ligands from more than one input struc-
ture, or if a reference ligand (see below) is present. Its omission in such cases
will cause the entire job to fail. ’startlig’ and ’endlig’ are set and used
only within the input file itself, to control the loop over ligands. In particu-
lar, PUT 0 INTO ’endlig’, combined with the subsequent WHILE command,
means loop until the end of the ligand structure file. By using different set-
tings for these variables, it is possible to run Glide for different segments
of a large multi-ligand database at different times (or at the same time on
different machines), without physically splitting up the file containing the

Impact 4.0 Command Reference Manual 117

Chapter 3: Perform Simulations

ligand structures. The script para_glide, in the $SCHRODINGER/utilities
directory, is useful for running such “parallel” Glide jobs.
The first (setup) DOCK task is almost identical to that in the previous, single-
ligand case. The order of the subtasks (ligand before receptor here, the
opposite order above) is irrelevant, both because the two subtasks are in-
dependent and because neither actually results in any action until the run
subtask. The larger values of maxconf and maxkeep in this case are the ones
we recommend for multiple ligands with internal conformation generation.
Another difference in this task is the presence of the external file spec-
ification in the report setup subtask. This indicates a file to which Glide
writes poses that pass all tests, in the order they are generated. Glide writes
its final output (see report write below) after processing this file to find
and sort the best nreport poses in the order requested. The glide_sort
script, in the $SCHRODINGER/utilities directory, is also available for post-
processing of this file according to different (user-selectable) criteria, and
sorting in order of different scoring functions, including customizable combi-
nations of various terms in GlideScore. Writing poses to an external file also
serves as a checkpointing facility. If a job is interrupted in the middle, the
data remain available in the external file for all ligands already docked. Note
that The external file sorting mechanism is not compatible with “rigid
docking” jobs such as the example in the previous section,2, or with “Score
in place” jobs (see below). For rigid docking jobs (or confgen jobs if the
external file specification is omitted), the poses that pass are stored and
sorted in program memory instead. For “Score in place,” only the single
input pose is treated, so saving, sorting, and structural reporting are not
relevant.
This example also differs from the previous one by the presence of a refer-
ence ligand. This is useful in cases where one of the ligands to be docked
is a known binder to the receptor, with a co-crystallized structure available.
That is not actually the case here, but we specify a reference ligand anyway,
just to illustrate the syntax. ligand reference name lig indicates that the
structure just read into species lig is the reference structure: if the first
ligand actually docked is the same molecule as this structure (as determined
by build primary check below), the output will include RMS deviations of
its docked pose(s) from this reference structure. screen noscore indicates
that no actual docking calculations are to be done on this reference struc-
ture in this task; just its input coordinates are stored for subsequent RMS
comparisons.
Like the first one, the subsequent DOCK tasks here are also very similar to
those in the previous example. The differences are the increase in maxref
to the number recommended for a multiple-ligand job; the presence of the

2 Actually, external file would work with that specific example, because there is only one
input ligand structure. But it doesn’t work in general.

118 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

confgen subtask in the rough-scoring task, which invokes Impact’s internal
conformation generator; and the keyword flex in the minimize subtask,
which enables ligand torsional flexibility during the grid-energy minimiza-
tion. The execution of the task is changed by confgen, however, in that for
each ligand structure read in, Glide loops over the conformations it gener-
ates. The specifications appearing in this confgen subtask have the following
meanings:

name lig Generate conformations for the indicated species.

ecut Reject any conformation whose internal energy (torsional and
1-4 vdW terms only) is more than the specified amount (in
kcal/mol) higher than that of the best (lowest-energy) confor-
mation generated.

Other than the implicit loops over conformations generated by confgen,
the main differences in the Glide procedure between this example and the
previous one come from the nature of the input (ligand) structure file and
the CREATE tasks that read it, and more important, from the DICE loop
itself, and other control structures.

build primary check
Before storing the structure (and other actions normally invoked
by build primary in a CREATE task), check whether it is the
same molecule as the one previously read. For this purpose,
two structures are considered to be the same molecule if they
contain the same atom types (to the extent that atom type is
encoded in the file), with the same connectivity, listed in the
same order. If they do, Impact does not need to repeat the
atomtyping procedure, or to reset other parameters. (Note: if
there were no reference ligand, this would be the first structure
read into the ligand species, so build primary check and the
subsequent parsing of ’buildcheck’ would not be needed here.
They would still be needed inside the loop, as described below.)
The result of build primary check is encoded in the value of
the DICE variable ’buildcheck’. The possible values are:

1 Structures are the same molecule

2 Structures are different molecules

-1 End of file (no “next structure” to read)

-2 Error reading next structure

IF ’buildcheck’ LT 0
If we hit end of file or error on reading the first ligand to be
docked, we must exit the program.
The PUT and SHOW commands here are simply to provide informa-
tive output. Note that SHOW writes only to the “main output” file

Impact 4.0 Command Reference Manual 119

Chapter 3: Perform Simulations

(1ets_example_mult.out as specified in the write file com-
mand at the top), not to Standard Output (or the .log file to
which it is redirected).

GOTO ABORT
Jump to the label :ABORT, which is at the end of the command
file.

gotostruct ’startlig’
As noted above, many.mol is a multi-structure file in MDL’s SD
format. (Analogous syntax, with read maestro file, would be
used to read such a file in Schrödinger’s Maestro format.)3 The
keyword-value pair gotostruct n calls for reading from the nth
structure in the file, where in this case n is the value of the DICE
variable ’startlig’, which we set to 1 at the top of this input
file. Thus if we wanted to start at ligand 3001, the command at
the top would be PUT 3001 INTO ’startlig.

PUT ’startlig’ INTO ’i’
Initialize the loop index.

WHILE (’endlig’ LT 1 OR ’i’ LE ’endlig’)
The loop control. If ’endlig’ is less than 1 (as it is set at
the top), this is nominally an infinite loop. Fortunately, DICE
provides a way of breaking out of such a loop, which we will
do in case of end of file or unrecoverable error (see GOTO BREAK
below). If ’endlig’ were 1 or greater, it would set a limit on
the number of times through the loop (and thus the number of
ligand structures to process), even if that meant exiting before
end of file. Thus to run only through ligand 1000 (if there are
that many), change the command at the top to PUT 1000 INTO
’endlig’.

nextstruct
Read the next structure in the file.

IF ’buildcheck’ LT 0
This is the crucial control structure. We need to break out of
the loop if we have encountered the end of the file or an error.
The PUT and SHOW commands are as above (except for details of
the messages), but the target of the GOTO is not.

GOTO BREAK
Jump to the label :BREAK, which is outside the loop.

3 For PDB format, Glide reads single-structure files, one per ligand (or input conformation,
if confgen is not used). In this case, the Impact input file would have to include commands
for storing the names of these files in a list, and the CREATE task in the loop would read
the file whose name is the element of this list given by the loop index.

120 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

PUT ’i’ + 1 INTO ’i’
Increment the loop index.

ENDWHILE End of the loop.

The final output of this job consists of the structure file 1ets_example_
mult_pv.mae, and the report file 1ets_example_mult.rept, which follows.
In the actual files on disk, all the columns are one one long row, to enable you
to load them into a spreadsheet. They are printed here in separate sections
for space reasons.

REPORT OF BEST 5 POSES

The receptor and sorted ligand structures written to the file

1ets_example_mult_pv.mae for use in the Pose Viewer

Rank Title Lig# Conf# Pose# Score GScore E(Cvdw) Eintern Emodel

==== ============ ==== ===== ===== ===== ====== ======= ======= ======

1 Lorazepam 5 2 112 -6.47 -6.47 -31.9 0.6 -45.3

2 indomethacin 4 4 84 -6.24 -6.24 -35.0 8.5 -47.2

3 Atropine 1 3 16 -5.42 -5.42 -38.8 2.1 -57.1

4 Ibuprofen 3 24 151 -5.37 -5.37 -27.3 1.8 -42.2

5 Diflucan 2 340 24 -3.61 -3.61 -34.4 4.9 -42.3

Ehbond Emetal Eclash E(Coul) E(vdW) RMSD

====== ====== ====== ======= ====== ======

-1.9 0.0 0.0 -2.5 -29.3 --

-1.9 0.0 0.0 -6.5 -28.5 --

-1.4 0.0 0.0 -9.6 -29.1 61.597

-1.5 0.0 0.0 -4.9 -22.4 --

-1.1 0.0 0.0 -5.3 -29.1 --

GlideScore (GScore) is the sum of a constant = -1.0, plus other

contributions including the following:

EHbond: Hydrogen-bonding term

Emetal: Metal-binding term

Eclash: Penalty for steric clashes

(GScore = 10000.0 indicates that a given ligand pose failed one

or more criteria for computing GScore. Depending on which ones

it failed, the components of GScore may not be valid either.)

ECvdW is the non-bonded interaction energy (Coulomb plus

van der Waals) between the ligand and the receptor.

Emodel is a specific combination of GScore, ECvdW, and Eint,

which is the internal torsional energy of the ligand conformer.

As requested with maxperlig 1, this file contains information on one struc-
ture per ligand. For comparison of different ligands, the structures are sorted
in order of increasing GlideScore (GScore), with the “best” ligand at the top.
In choosing the best pose (or the best maxperlig poses) within the set of fi-
nal structures for a single ligand, however, Glide uses the Emodel score rather

Impact 4.0 Command Reference Manual 121

Chapter 3: Perform Simulations

than GlideScore. Emodel is a weighted average of the GlideScore function
and the Coulomb+vdW interaction energy (ECvdW) for a given pose, and
is better suited than GlideScore for comparing poses of a single ligand.
For each pose, the report file lists its rank in GlideScore order, the ligand “ti-
tle” taken from the input structure file, and the ligand number in the order
the ligands were read in. (This includes any skipped ligands. For instance, if
ligand #5, Lorazepam, were not processed for some reason, but processing
of other ligands continued after it, then progesterone would still be listed
as ligand #6.) It also gives conformation and pose numbers according to
Glide’s internal ordering, which are useful for distinguishing different struc-
tures of the same ligand (when maxperlig > 1). The subsequent columns
include GlideScore, Emodel, various components of these, and if a reference
structure was specified and the first ligand (in the order they were read
in) is the same molecule as the reference, the heavy-atom RMS deviation (in
Angstroms) of poses of that ligand from the reference structure. (The RMSD
here includes the effects of translation and rigid rotation of the ligand, not
just conformational differences. The high RMSD value in this case occurs
because the reference ligand in this case was the input structure of the first
docked ligand, which in fact is not a cocrystallized ligand for this receptor.)
For other molecules (or if there was no reference structure), -- appears in
the RMSD column. The “Score” column in the above table is the same
as GlideScore because by default, Glide ranks poses according to this scor-
ing function. By specifying by energy in the report setup command, or
by using the glide_sort post-processing script with appropriate flags, the
user may choose to sort on some other score such as ECvdW (by energy),
or some custom combination of various terms in the table (glide_sort).
The “Score” column will always contain the value of the function by which
the poses are ranked. If the keyword-value pair verbosity 2 (or greater)
appears in a parameter subtask before (or in the same DOCK task as) the
report write command, the report file shows the ligand center coordinates
and Euler angles of each pose, instead of some of the score components.
GlideScore values of 10000.0 indicate that GlideScore was in fact not calcu-
lated for a given pose. This occurs when the pose fails one (or more) of the
criteria specified in the scoring subtask.

3.6.5 Example 4: Scoring in Place

In addition to searching for the best conformation and pose of one or more
ligands, Glide can also evaluate its scoring functions on an input struc-
ture. To request this scoring in place feature, use the keyword singlep (for
“single-point” energy or scoring) in the ligand subtask of a DOCK task after
the setup. If this appears in a loop, scoring in place will be done for each
input structure read in the loop. Note in the following input file that the
DOCK tasks for rough-score screening and energy minimization are combined
into one; but no screening or minimization actually takes place. As noted

122 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

above, the external file keywords cannot be used in the report setup
subtask for such a job. Glide does not currently report an error if they are
used (because they may occur in a separate DOCK task from the singlep
keyword), but the job will not run correctly if they are present.

write file "1ets_single_inplace.out" -

title "1ets_single_inplace" *

PUT 0 INTO ’buildcheck’

PUT 1 INTO ’startlig’

PUT 0 INTO ’endlig’

PUT -1 INTO ’strucseq’

DOCK

smooth anneal 2

ligand multiple maxat 100 maxrot 15 -

ligvdwscale factor 1.000000 ccut 0.150000

receptor rdiel readf -

"1ets_single_grid"

screen readscreen -

"1ets_single_grid.save" -

greedy readgreed -

"1ets_single_grid_greedy.save" -

maxkeep 1000 scorecut 100.000000

parameter setup save maxconf 1

final glidescore

report setup by glidescore nreport 500 -

maxperlig 1 rmspose 0.500000 delpose 1.300000

run

QUIT

PUT 0 INTO ’strucseq’

CREATE

build primary name lig type auto read maestro file -

"1ets_single_inplace.mae" -

tag LIG_ gotostruct 1

build types name lig

QUIT

DOCK

smooth anneal 2

ligand name lig singlep

screen noscore refine maxref 100

parameter save

final glidescore read -

"1ets_single_grid.csc"

minimize itmax 100 dielco 2.000000

scoring ecvdw -25.000000 hbfilt -0.700000 metalfilt 0.000000 -

hbpenal 3.000000

report collect -

rmspose 0.500000 delpose 1.300000

Impact 4.0 Command Reference Manual 123

Chapter 3: Perform Simulations

run

QUIT

DOCK

parameter clean final

report -

rmspose 0.500000 delpose 1.300000 write filename -

"1ets_single_inplace"

run

QUIT

END

The output of a score-in-place job is written to a .scor file, in this case
1ets_single_inplace.scor. This file gives the components of GlideScore
and ECvdW for each input ligand (in this case only one). There is no
structural output file (like the _pv.mae files in previous examples), because
the structure is the same as in the input file.

Lig # Title GScore HBond Metal Lipo RotB Clash BuryP ECvdW ECoul EvdW

1 -11.40 -4.55 0.00 -6.58 0.73 0.00 0.00 -70.01 -19.98 -50.03

GlideScore (GScore) is the sum of a constant = -1.0, plus the

following contributions:

HBond: Hydrogen-bonding term

Metal: Metal-binding term

Lipo: Lipophilic contact term

RotB: Penalty for freezing rotatable bonds

Clash: Penalty for steric clashes

BuryP: Penalty for buried polar groups

(GScore = 10000.0 indicates that a given ligand pose failed one

or more criteria for computing GScore. Depending on which ones

it failed, the components of GScore may not be valid either.)

ECvdW is the non-bonded interaction energy (Coulomb plus

van der Waals) between the ligand and the receptor.

3.6.6 Example 5: Glide Constraints

Glide constraints are requirements that docked ligands have specific inter-
actions with the receptor. During grid generation, you can define up to ten
constraints in the receptor, each of which may be a polar hydrogen atom,
hydrogen-bond acceptor, or metal ion (atom-based constraint); a hydropho-
bic region on and near the receptor surface (hydrophobic constraint); or the
spherical region within a specified distance of a specified point (positional
constraint). For atom-based constraints, if you specify a receptor atom that

124 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

is part of a functional group, and has a structural symmetry with one or
more other atoms of the same chemical type in the group, then Glide will
automatically include the symmetry-related atoms as part of the same con-
straint specification, and will consider a ligand interaction with any one of
them as satisfying the constraint.
During ligand docking, you can specify that ligand poses must have appro-
priate atoms in appropriate positions relative to up to four of these receptor
constraint sites, in order to be considered for docking. The categories of lig-
and atoms that qualify to satisfy each constraint are specified by SMARTS
patterns in a feature file, which allows both restriction within and flexibil-
ity beyond the atom types normally considered as participating in hydro-
gen bonding, metal ligation, etc. For each hydrophobic constraint that you
choose to enforce, you can specify the minimum number of ligand hydropho-
bic heavy atoms (default 1) that must lie in the corresponding hydrophobic
region around the receptor in order to satisfy the constraint.
Because Glide incorporates any constraint specifications in several of its hi-
erarchical filters (and incurs little additional computational cost in doing
so), using constraints can accelerate docking calculations. This occurs be-
cause large regions of pose space can be quickly eliminated (as well as entire
ligands that don’t have the right kind of atoms to satisfy the constraints),
beyond what a given Glide filter would eliminate without the constraints.
In addition, by eliminating “false positive” ligands or poses, constraints can
improve enrichment factors in database screening. And by restricting the al-
lowed binding modes, judiciously chosen constraints may also improve dock-
ing accuracy.
As the following two examples demonstrate, you must specify constraints in
the receptor subtask of the initial DOCK task, in both the grid generation and
ligand docking jobs. The grid generation job needs to know which receptor
atoms or regions you want to require ligand atoms to interact with. In
addition, because hydrophobic constraints are not associated with individual
atoms, a grid generation job needs to read a file containing a description of
the hydrophobic regions (a list of the grid cells included in each region) that
define such constraints. The name of this file must be supplied explicitly
in the main input file; the Maestro interface calls the file base.phob, where
base is the “base name” specified with the readf and writef keywords.
For a positional constraint, you must specify the Cartesian coordinates of a
position, and the radius of the sphere around that position in which one or
more ligand atoms must lie to satisfy the constraint. The grid generation
job extracts or calculates information about the receptor atoms that define
hydrogen-bond and metal constraints (such as their types and locations)
that the docking job will use in enforcing the constraints, and writes the
information to a file (default name base.cons), along with the grid cell lists
it gets from the base.phob file for hydrophobic constraints, and those it
calculates from the sphere centers and radii for positional constraints. The

Impact 4.0 Command Reference Manual 125

Chapter 3: Perform Simulations

docking job needs to know that it must read the constraint definition file that
the grid generation job wrote, and which of the constraints defined therein
it must enforce.

DOCK

smooth anneal 2

receptor rdiel name recep -

constraints ncons 4 nphobic 2 file "1kv2_grid.phob" -

consatom 1065 -

consatom 2531 -

writef "1kv2_grid" writerdiel -

protvdwscale factor 1.000000 ccut 0.250000 -

box center read xcent 4.700036 ycent 15.307946 zcent 33.614067 -

boxxrange 29.622122 boxyrange 29.622122 boxzrange 29.622122 -

actxrange 29.622122 actyrange 29.622122 actzrange 29.622122

screen greedy -

box center read xcent 4.700036 ycent 15.307946 zcent 33.614067 -

ligxrange 10.000000 ligyrange 10.000000 ligzrange 10.000000 -

writescreen "1kv2_grid.save" -

writegreed "1kv2_grid_greedy.save" -

maxkeep 5000 scorecut 100.000000

parameter clean

final glidescore

run

QUIT

In this grid generation job, we define four constraints (ncons 4) in the protein
kinase P38 (Protein Data Bank entry 1KV2). Two of the constraints are
hydrophobic (nphobic 2), and the hydrophobic regions of interest are in
the file 1kv2_grid.phob, which the Maestro interface wrote (based on a
calculation of a hydrophobic surface for the protein, and user selection of
desired grid cells) in setting up the job. In this case, the regions correspond
to the locations of naphthalene and tert-butyl moieties of the cocrystallized
ligand in the 1KV2 structure. The other two constraints (the number is not
explicitly listed, but obviously equal to the difference between the ncons
and nphobic values) are either hydrogen bonds or metal ions, in either case
defined by single protein atoms (and symmetry-equivalent ones, if any). We
list each of these atoms (consatom) by its atom index in the input structure.
In this case, the atoms are the side-chain (carboxylate) oxygen(s) of residue
GLU 71 and the backbone (amide) hydrogen of ASP 168; the cocrystallized
ligand in the 1KV2 structure makes hydrogen bonds to both of these atoms,
though not all known active ligands do.
In a ligand docking job, you may specify up to four of the constraints defined
in the previous gridgen job, for Glide to enforce when docking ligands. The
listing of which constraints are eligible for enforcement, and the specification
of how many of those eligible are required to be satisfied, are contained in
the feature file, along with the specification for each listed constraint of
SMARTS patterns that ligand atoms must match in order to satisfy that
constraint.

126 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

In the excerpt shown below from a ligand docking job, the receptor subtask
indicates that we want to apply constraints set up in a prior grid generation
job. The feature file 1kv2_dock_1cons.feat might list any number of the
previously defined constraints (and SMARTS patterns to match ligand atoms
that can satisfy them), but specify that only some smaller number of them is
required to be satisfied. For instance, if it lists three constraints and specifies
that one is required, then ligands and poses that satisfy any one of those
three constraints may appear in the output. If the grid generation job defined
ten constraints, then the feature file can in principle list all ten, but cannot
specify a number greater than four as the satisfaction requirement. For a
given set of grid files, different docking jobs will in general have different
feature files associated with them.
The keywords restcoef and restexp give parameters of a restraining po-
tential that Glide uses to enforce the constraints during grid-energy opti-
mization. This potential is a Gaussian function of the distance r between
a polar hydrogen and a hydrogen-bond acceptor, or a metal ion and its co-
ordinating atom in the ligand, centered at the equilibrium distance for the
given interaction:

V (r) = −A exp
[
−b (r − r0)

2
]

where r0 is the equilibrium distance, 1.85Å for a hydrogen bond or 2.11Å
for a metal-ligand interaction. The default values for the coefficients A and
b are those shown below for restcoef and restexp: A = 30.0kcal/mol and
b = 0.3Å −2. These values of the parameters have yielded good results in our
simulations, but we do not claim that they are the only reasonable values.

DOCK

...

receptor rdiel readf -

"1kv2_grid" -

constraints loosedock 2 featurefile -

"1kv2_dock_1cons.feat" -

consname -

"1kv2_grid.cons" -

restcoef 30.0 restexp 0.3

...

QUIT

3.6.7 Subtask Smooth

Request smoothing of energy functions used in constructing grids.
• smooth [cwall val] [csoft val] [vsoft val]

[anneal [1|2]]

Impact 4.0 Command Reference Manual 127

Chapter 3: Perform Simulations

cwall, csoft
Smoothing parameters for Coulomb energy.

vsoft Smoothing parameter for Lennard-Jones energy.

anneal Controls minimization on smoothed and/or unsmoothed energy
surface.

Both smoothing functions work by evaluating the standard energy functions
for two atoms at an effective distance that is positive when the actual dis-
tance between the atoms is zero. For the Coulomb energy, the effective
distance at an actual distance d is given by

ceff = sqrt[d * d + cwall * cwall * exp(- (d * d) / csoft)],

and for the Lennard-Jones energy, by
veff = d + vwall * exp(- (d * d) / vsoft).

(Note that in each case, the wall parameter is the value of the effective
radius at d = 0, and the soft parameter determines how rapidly the function
reverts to its unsmoothed value as d increases, with a larger parameter giving
a slower (or “softer”) transition.)
Note that vwall is not user-specifiable. Instead, for the contribution of a
given protein atom, Glide uses half of the Lennard-Jones σ parameter for
that atom. The default values for the other parameters are cwall = 2.0 Å,
and csoft = vsoft = 4.0 Å2. All of the parameters must be positive num-
bers; if the user specifies any negative, all are ignored, a warning is issued,
and smoothing is not performed. In addition, if the softness parameters are
below certain lower bounds, the resulting smoothed potential will have a
local maximum (for a repulsive potential) at some positive distance, and a
spurious minimum rather than a maximum at zero distance. For Coulomb
smoothing, the lower bound is csoft = cwall * cwall. For Lennard-Jones,
since vwall varies with the protein atom type, we use a lower bound large
enough to accommodate the largest σ/2 in paramstd.dat (3.358 Å for the
Cs+ ion, which gives a lower bound of vsoft = 2.075 Å2). If the user spec-
ifies a softness lower than the applicable lower bound, a warning is issued
and the parameter is reset to equal the lower bound.
With the smoothing functions, Glide offers the option of annealing during
grid-energy minimization. This involves starting the minimization on the
potential-energy surface defined by the smoothed functions, and gradually
shifting to the unsmoothed functions. The advantage of this procedure is to
allow exploration of more regions of ligand pose and conformational space
early in the process (because the smoothed functions have lower barriers),
while still ending at a minimum of the original grid potential rather than
at a pose whose energy is made artificially low by smoothing. Specifying
smooth anneal 2 when calculating grids will result in both smoothed and
unsmoothed functions being calculated (and saved to disk); the same specifi-
cation in the task where minimization is done will result in annealing during
minimization. Smooth anneal 1 means calculate, save, and/or minimize on

128 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

only the smoothed surface. To calculate or minimize on only the unsmoothed
potentials, omit the smooth subtask entirely. We strongly recommend using
smooth anneal 2 in all cases.

3.6.8 Subtask Receptor

Specify receptor molecule(s) and active site.
• receptor [writef writebase] [readf readbase] -

[cdiel | rdiel | nil] -

[writecdie | writerdie | nil] -

[name spec [mole [mol | all]] -

[constraints [ncons num_cons -

[nphobic num_phob file fname] -

[nposit num_posit (xpos val ypos val zpos val -

rpos val constitle cons) repeated num posit times] -

(consatom num constitle cons) -

repeated (num cons − num phob − num posit) times] -

[consname file] [restcoef val][restexp val] -

[metalbind [charged | neutral | any]] -

[featurefile fname [featverb num] | -

nusecons num_ucons [nusephob num_uphob -

(usephob num nfill num) repeated num uphob times] -

(usecons num) repeated (num ucons − num uphob) times] -

[loosegrid num] [loosedock num] [finalonly]] -

[bsize size] [nlev nlevels] -

[(scut val) repeated nlevels-1 times] -

[box center read xcent val ycent val zcent val -

boxxr val boxyr val boxzr val -

actxr val actyr val actzr val] -

[active nsec num_sections -

(fres num lres num) repeated num sections times -

[buffer val]] [readsurface file] [writesurface file]

writef
readf Write/read energy grids (or fields) to/from disk files. writef

writes adaptive grid structure information to writebase.grd,
Coulomb potential (constant dielectric) to writebase coul.fld,
Coulomb potential (linear dielectric) to writebase coul2.fld, and
Lennard-Jones grids to writebase vdw.fld. readf reads the files
if they exist, and calculates the energy grids from scratch if they
don’t (and there is a receptor structure specified with the name
keyword). At least one of readf and writef should always be
specified. If both are specified, Impact reads whatever files are
present, and calculates and writes those that aren’t. (If read-
base and writebase are different, Impact reads from the former
and writes to the latter.) The files specified by readf should of
course have previously been written as a result of a writef in a
previous docking task.

Impact 4.0 Command Reference Manual 129

Chapter 3: Perform Simulations

cdiel
rdiel Specifies whether the Coulomb energy should be calculated as-

suming a constant dielectric (cdiel) or a dielectric linear in
the interatomic distance (rdiel). If neither is specified, the
default is to use the constant dielectric. If both cdiel and
rdiel are specified, rdiel wins, i.e., the linear dielectric is used.
We recommend rdiel (and dielco 2.0 in the minimize sub-
task), to account, however roughly, for solvent effects. Note
that these keywords affect which grid file is read, not the orig-
inal calculation and writing of the grids, which is controlled by
writecdie/writerdie.

writecdie
writerdie

Specifies whether Coulomb grids are written to disk for the con-
stant (writecdie) or linear distance-dependent (writerdie) di-
electric model. If neither is specified, both grids are written. (If
both are specified, the one that comes last wins.) Because grid
files are large and we recommend always using the linear dielec-
tric, we also recommend using writerdie to save disk space.

name
mole Specifies the Impact species that includes the receptor

molecule(s). If the species contains more than one molecule
(apart from bound solvent), then the mole keyword is required,
with either the name (mol) of a single molecule, or all to
indicate all molecules in the species are included.

constraints
Require ligand poses to make specified interactions with the re-
ceptor. As noted above (see Section 3.6.6 [Constraints (Dock-
ing)], page 124), the constraints keyword must appear in both
grid generation and ligand docking jobs in order for constraints
to be used. The appearance of the following keywords depends
on the type of job.

ncons This keyword appears in grid generation jobs, and
the value gives the total number of constraints (of
all types combined) defined.

nphobic num file fname
The value num gives the number of hydrophobic
constraints defined in a grid generation job. The
file fname contains lists of grid cells near the recep-
tor that constitute the hydrophobic region for each
such constraint.

130 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

nposit
xpos
ypos
zpos
rpos Specification of positional constraints, which are re-

quirements that a ligand atom (whose desired chem-
ical characteristics will be defined in the ligand dock-
ing job) occupy a specifed (generally small) region
of space. The nposit value gives the number of such
constraints, each of which is defined as a spherical
region centered at the Cartesian coordinates given
by (xpos,ypos,zpos), with radius rpos.

consatom For each atom-based (H-bond or metal) constraint
defined in a grid generation job, this specification
lists the index of the constraint atom (or one of a set
of symmetry-equivalent atoms) in the input receptor
structure file.

constitle
An ASCII label for each constraint. This is specified
in the Glide input file for positional and atom-based
constraints only. For hydrophobic constraints, Glide
reads the title from the file listed with nphobic.

consname This may appear in either grid generation or ligand
docking jobs. It specifies an alternative file name for
writing or reading information about the receptor
constraint atoms. The default is writefbase.cons
or readfbase.cons, whichever is present in the same
receptor subtask.

restcoef
restexp These may be specified in a ligand docking job.

They are the depth (multiplicative coefficient, with-
out the negative sign) and inverse square half-width
(coefficient of the exponent) in a Gaussian potential
function added to enforce the constraints during en-
ergy minimization. For the form of the potential,
See Section 3.6.6 [Constraints (Docking)], page 124.

featurefile
Gives the name of a “feature” file, which specifies
which constraints must be satisfied in a ligand dock-
ing job (including optional as well as required con-
straints, in one or more groups with a “number re-
quired” specified for each group). In addition to
listing the constraints (by title and index in the

Impact 4.0 Command Reference Manual 131

Chapter 3: Perform Simulations

consname file that the grid generation job wrote),
this file specifies what type of ligand atoms (those
matching listed SMARTS patterns) will be accepted
as matching each constraint.

featverb This number is a “verbosity” parameter used by
the portions of Glide that read the feature file, and
match ligand atoms against SMARTS patterns. The
default, equivalent to featverb 1, prints very little
information about the file and the matches, whereas
featverb 4 gives a complete listing of which con-
straints and patterns are listed in the file, and which
patterns are matched by each ligand to be docked.

loosegrid
Increase the distance tolerance (by num Å) for con-
sidering grid cells to be appropriate locations for
constraint-satisfying ligand atoms. Used in grid
generation jobs only, not docking, and affects only
atom-based (H-bond and metal) and positional con-
straints, not hydrophobic. (The qualifying grid cells
for hydrophobic constraints are always considered
to be those stored in the file associated with the
nphobic keyword, no more and no less.) Default,
or loosegrid 0, is to use the distance tolerances
built into the algorithm for calculating the grid cells.
Looser criteria may improve pose recovery (i.e., in-
crease the likelihood of finding constraint-satisfying
poses for active ligands), possibly at the cost of a
decrease in computational speed.

loosedock
Increase the tolerances (by num Å) for distance
matches used to determine constraint satisfaction
during the rough-score stage of the Glide funnel.
Used in ligand docking jobs only. Default, or
loosedock 0, is to use the distance tolerances
built into the constraint algorithm. Looser
criteria may increase the likelihood of finding
constraint-satisfying poses for active ligands,
possibly at the cost of a decrease in computational
speed.

finalonly
With this keyword, used in ligand docking jobs only,
constraints are used only at the beginning of the
docking run to filter out ligands that lack appropri-

132 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

ate atoms to satisfy the constraints, and at the end
to filter out final poses that do not satisfy them, not
at any intermediate stages of the Glide funnel. The
output poses from a constraints finalonly run,
for each ligand that contains appropriate atoms,
are the best (by Emodel score) constraint-satisfying
poses of that ligand that would have emerged from
an unconstrained docking job.

metalbind [DEPRECATED]
This may appear in a ligand docking job. It speci-
fies that any ligand atom that satisfies a constraint
to bind a metal ion in the receptor must bear a
nonzero formal charge (charged), must bear zero
formal charge (neutral), or may be in any formal
charge state (any). The default, and the recom-
mended value, is charged.

nusecons [DEPRECATED]
This and the following keywords may appear in a
ligand docking job, to select constraints to enforce
from among those defined in the consname file that
the grid generation job wrote. The nusecons value
gives the total number of constraints to enforce, of
all types.

nusephob [DEPRECATED]
This gives the total number of hydrophobic con-
straints to enforce.

usephob [DEPRECATED]
nfill [DEPRECATED]

For each selected hydrophobic constraint, the
usephob value gives its position in the consname
file, and nfill the number of ligand hydrophobic
heavy atoms that must be located in the
corresponding hydrophobic region.

usecons [DEPRECATED]
These values are the positions of the selected non-
hydrophobic constraints in the consname file. Note
that hydrophobic constraints are listed first in this
file, so if there are two hydrophobic constraints,
the “first” non-hydrophobic one is selected using
usecons 3.

bsize The size of the finest grid spacing for the energy grids, in
Angstroms. Default 0.4.

Impact 4.0 Command Reference Manual 133

Chapter 3: Perform Simulations

nlev Number of levels of the adaptive grid. At each successive level
(farther from the receptor surface), the grid spacing is twice
what it is at the previous level. Thus if the smallest grid spacing
is size, then the largest is 2(nlevels−1) * size. Default nlevels = 4.

scut Distances from the receptor (the closest receptor surface point)
at which the grid spacing changes. Thus

bsize 0.4 nlev 2 scut 1.0

means that the grid spacing is 0.4 Å for points closer than 1.0 Å
from the receptor surface, and 0.8 Å farther away. If there is
more than one scut value (i.e., if nlevels > 2), they must be
given in descending order. The default (corresponding to bsize
0.4 nlev 4) is scut 4.4 scut 2.8 scut 2.0.

box Explicitly specify the rectangular box in which the energy grid
is defined, rather than building it based on a specification of
active site residues.
center read

Gives the three Cartesian coordinates of the cen-
ter of the box, as the the numbers following xcent,
ycent, and zcent. The keyword read is required
here because another option is available with the
center keyword in the screen subtask, and the
same code is used to parse the box input in both
subtasks.

boxxr
boxyr
boxzr The size of the grid box (in Angstroms) in the x,

y, and z directions. That is, the x-coordinates of
the grid points in the box range from approximately
xcent − boxxr/2 to xcent + boxxr/2. This is ap-
proximate because extra space may be added to the
ends of the box so that it contains a whole number
of elementary cubes of the grid.

actxr
actyr
actzr Dimensions (Angstroms) of the box used to deter-

mine “active” residues whose surface is used in early
rough-score filters. Surface points are calculated for
all residues that have any atom in this box. In gen-
eral this should be the same size as the grid box, but
memory limitations in the surface-generation algo-
rithm require a box no larger than 50 Å on a side.

active An alternative method of defining the dimensions of the grid
and “active surface” boxes. Specifies which residues are to be

134 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

considered the active site of the receptor. The grid box is com-
puted using the largest and smallest x-, y-, and z-coordinates of
atoms in these residues, and adding a distance in each direction
(positive and negative) as specified with the buffer keyword.
As when directly specifying actxr, etc., surface points are actu-
ally generated for all residues with any atom in the box, not just
the ones specified here. The initial active residues are specified
as num sections ranges, each given by a fres lres pair. Each
fres value must be greater than the previous lres (the first
must be greater than zero), and each lres must be greater than
or equal to the corresponding fres (with equality implying a
range consisting of a single residue). The maximum value of
num sections is 100. (If you need more than that, consider fill-
ing in to combine several ranges into one.) If neither active nor
box is present, then all residues of the receptor are considered
to be in the active site, with a buffer of the default size, 11.0
Angstroms.

nsec Indicates that the active site residues are given by the following
fres num1 lres num2 pairs, where each of the num sections
pairs indicates that all residues in the range num1 through
num2, inclusive, are part of the active site. (Note that such
a “range” may consist of a single residue, as fres 79 lres 79.)

buffer Indicates that the box in which the grids are defined extends a
distance bufval Angstroms beyond the minimal box that encloses
the active site, in each of the positive and negative x, y, and z
directions. Default is 11.0.

readsurface
writesurface

Read/write receptor surface points from/to the indicated file.
The surface points are calculated from the positions and radii of
receptor atoms in residues contained in the “active” box defined
by either actxr, etc., or active, and are used in early filters
in the rough-score screening step. The surface calculation is
somewhat time-consuming, so it may be convenient to store the
points for future use, particularly in runs where the energy grids
are not being recalculated (which takes a much longer time) but
the rough-score grids are (which is quite fast, so recalculating
the surface can add significantly to it).

3.6.9 Subtask Ligand

Specify ligand molecule.
• ligand keep

• ligand multiple maxat nat [maxrot nbond] -

Impact 4.0 Command Reference Manual 135

Chapter 3: Perform Simulations

[amideoff]

• ligand name spec [mole mol] -

[init [zero | rand [randopts] | read posespec] -

[cminit [zero | box | lig | grid gridspec] -

[reference] [noelec] [[stdrot | norot]] -

[multiple maxat nat maxmol nmol] -

[new]

keep Indicates that no new parameters or coordinates are to be read
in for the ligand, but that there is still a ligand present. The
docking calculation will not run correctly if there is no ligand
subtask present, so ligand keep is required in invocations of
the DOCK task that do not introduce a new ligand conformation,
as in a pose refinement and energy minimization step after a
rough-score screening task (possibly in a loop over externally
generated conformers) for the same ligand. If the keep keyword
appears in a ligand subtask, all other keywords in that subtask
are ignored.

multiple The keyword multiple is used here for historical reasons. It
should really be called ligand size, because it is necessary
even in single-ligand jobs that contain a “setup” DOCK task that
doesn’t dock (or otherwise specify) any specific ligand. For such
a single-ligand job, maxat and maxrot should give the number of
atoms and rotatable bonds in that ligand. For multiple-ligand
jobs, they give bounds on the size of ligands that will be consid-
ered, that is, input ligands with more atoms or rotatable bonds
will be skipped. The defaults are maxat 100 maxrot 35, and the
maximum allowed value for maxat is 200.
The multiple keyword must appear in the ligand subtask of
the first DOCK task of an Impact input file.

amideoff In Glide standard precision (SP) and high throughput virtual
screening (HTVS) jobs, the amideoff keyword indicates that
amide bonds should not be considered rotatable. By default,
they are rotatable.
In Glide extra precision (XP) jobs, the amideoff keyword in-
stead applies a 3.5 kcal/mol penalty on cis-amide conformations
and a maximum penalty of 6.0 kcal/mol for 90 degree twisted
amide conformations, with interpolated penalties in between.

name The name of the species in which the ligand molecule is to be
found.

mole The name of the ligand molecule within species spec. Note that
Glide can only handle single molecules (as defined in the create
task) as ligands, so if spec contains more than one molecule,
mole mol is required.

136 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

reference
Specifies that the current ligand molecule (the one most re-
cently read in to the specified species) is to be taken as the
reference conformation for root-mean-square deviation (rmsd)
calculations. Such calculations are only meaningful, and Glide
only does them, for ligands that are the same molecule as the
reference. Glide also issues a warning that rmsd calculations
may not be meaningful for a multiple-ligand job, but the rmsds
it does calculate should be correct. In general (and in jobs set
up and/or launched from the Maestro user interface), no actual
docking calculations are done in the DOCK task that specifies the
reference ligand. It is of course possible to include the reference
ligand in a subsequent DOCK task that actually does dock it.

init
cminit Specify the initial pose of the ligand for energy minimization, if

rough-score screening is not performed. The usual specification
of these keywords (and the default) is init zero cminit lig.
If rough-score screening is run, these keywords are ignored, be-
cause the initial poses for minimization are those that survive
screening.

init zero Specifies that the ligand center should start at the
origin of coordinates, unless displaced by cminit.

init rand [cmrange val] [thetarange val] [phirange
val] [psirange val] [seed num]

Specifies a random starting pose. This is chosen
in the ranges given with the keywords cmrange,
thetarange, phirange, and psirange. That
is, each Cartesian coordinate of the center
position starts in the range (-cmrange/2) to
(cmrange/2) Angstroms about the position
specified by cminit; the Euler angle θ starts in
the range 0 to (thetarange) degrees; φ starts in
the range (-phirange/2) to (phirange/2), and
similarly for ψ. iseed is a seed for the random
number generator. The defaults are cmrange 2.0
thetarange 30.0 phirange 60.0 psirange 60.0
iseed 137.

init read xcm val ycm val zcm val phi val theta val psi
val

Initializes the ligand to the specified pose (center
coordinates in Ansgtroms, angles in degrees), again
subject to modification by cminit.

Impact 4.0 Command Reference Manual 137

Chapter 3: Perform Simulations

cminit zero
Specifies that the starting position of the ligand cen-
ter should be at the origin, or unmodified from the
position specified by init. Thus specifying cminit
zero with init zero or init rand would indeed
place the ligand at the origin of coordinates, or ran-
domly in the specified range around it, which is un-
likely to be useful. But cminit zero is the default
with init read, in which case it leaves the ligand
at the specified position.

cminit lig
Starts the ligand at the position given in the input
file. This is the default with init zero and init
rand. In the latter case, the starting position is
randomly displaced in the specified range about the
input position.

noelec Turn off electrostatic interactions, by setting partial charges to
zero for all atoms in the current ligand. This is reset for each
ligand structure read in, so the noelec keyword must appear in
the first DOCK subtask for each ligand, e.g. in the ligand loop.
Note also that the final reported Coulomb energy for a ligand
pose is a “scaled” energy that depends on formal charges as well
as partial charges, and noelec does not zero the formal charges,
so the output files (.rept and .mae) may report nonzero Coulomb
energies even if noelec is set. But noelec does guarantee that
no electrostatic interactions are included in the sampling and
energy minimization steps, in which the final poses are produced.

stdrot
norot Control the starting orientation of the ligand. stdrot places the

ligand in a standard orientation, with its diameter (the line seg-
ment connecting the two most widely separated ligand atoms)
pointing along the z-axis. norot leaves the ligand in the ori-
entation specified with the init keyword. With init read ...
cminit zero, the ligand starts in the user-specified position and
orientation, and the default is norot to leave it there. In all
other cases, the default is stdrot. The Euler angles that de-
fine poses, in both phases of the docking calculation, are then
defined relative to the standard orientation.

new Indicates that the current ligand molecule has a distinct struc-
ture (not just a different conformation) from the preceding one.
This keyword is usually unnecessary, because the newness of the
ligand is perceived automatically by build primary check in its
CREATE task.

138 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

3.6.10 Subtask Parameter

Specify various parameters and flags.
• parameter [verbosity num] [maxconf num] -

[setup] [save] [clean]

This subtask sets certain controls on the overall operation of the task.

verbosity
Controls the amount of information printed to STDOUT and
to the main output file. The default is verbosity 1, which
should be sufficient for most users’ purposes. Certain things are
printed independent of the value of this parameter, including the
summary (labeled DOCKING RESULTS) of the best-scoring poses
(by various criteria) for each ligand and their scores. verbosity
0 (or less, which is equivalent to 0), prints a bare minimum of
additional information. Values higher than 2 or 3, and especially
higher than 5, print information that’s very unlikely to be useful
to anyone other than developers and debuggers, and can result
in extremely large output files. A given verbosity level remains
in effect unless and until the parameter subtask of a subsequent
DOCK task changes it.

maxconf The maximum number of ligand conformations to be processed
in this job. This parameter sets the size of a dynamically allo-
cated array, and attempting to read conformations beyond this
number will result in an error.

setup Indicates that the current invocation of the DOCK task is only
for the purpose of setting up arrays (including rough-score and
energy grids) for use by subsequent invocations in the same Im-
pact job (as in multi-conformation loops). Though there will
in general be a screen subtask along with parameter setup to
set parameters for the rough-score screening, no actual screen-
ing calculation on the ligand will actually be done at this point.
(Nor will minimization, which there’s no reason to specify at all
in a task with parameter setup.)

save
clean Specify the disposition of various dynamically allocated arrays

(including those that hold the rough-score grids, and the ligand
and receptor coordinates copied from the main Impact arrays)
at the end of the current invocation of the DOCK task. save
means leave them in place for use by subsequent invocations of
the task, clean means delete them, which means any subsequent
invocations must build them again. If setup is specified, save
is the default. (Indeed, setup clean doesn’t make sense: set up
the grids, don’t use them, and then throw them away.) If neither
setup nor save is specified, clean is the default. (But it doesn’t

Impact 4.0 Command Reference Manual 139

Chapter 3: Perform Simulations

hurt to specify save or clean, where appropriate, even if it is
the default.)

3.6.11 Subtask Confgen

Request internal generation of ligand conformers.
• confgen -

ecut val [baddist val] -

[maxcore num] [corescale val] -

[noringconf]

This is the recommended method of incorporating ligand flexibility into
Glide, especially in a multi-ligand job. As shown in the examples above, the
command sequence in an Impact input file should be different depending on
whether there is one input structure per ligand, with confgen specified, or
multiple structures assumed to be externally generated conformers for each
ligand. In the latter case, we recommend a loop over screen subtasks, to run
the first stages of rough-score screening (through greedy score evaluation)
on all of the conformers of a given ligand, before running pose refinement,
grid-energy optimization, and final (GlideScore) scoring on all poses that
pass the first stages for that ligand. With confgen, by contrast, the loop
over the internally generated conformations is specified by a single screen
subtask, so the subsequent steps should ensue immediately.
By default, confgen generates alternative ring conformations for five and
six membered non-aromatic rings. To turn off this procedure, use the
noringconf keyword. For six membered rings, the alternative chair confor-
mation is generated if the equatorial–axial conformational change of the sub-
stituents is empirically not too energetically costly. The five membered rings
currently treated are sugar rings and five membered rings with N and/or S
atoms. The alternative sugar ring conformation generated from the input
consists of the energetically preferred pseudorotation. Five membered rings
with N or S atoms have a second ring conformation generated by rotation
of the out-of-plane corner.

ecut This parameter is the energy cutoff used in the gas phase con-
formation generation. Conformations with an energy above ecut
relative to the lowest energy conformation are not considered.
Note that the energy scale here is with respect to the model
torsion/1-4 vdW confgen potential and not a full force field po-
tential.

baddist The baddist parameter is used to generate a pair list for in-
tra ligand repulsion terms used in the gas phase generation of
conformations. We do not recommend changing this parameter
from its default value of 2.45 Å.

maxcore The maxcore parameter allows the user to define a maximum
number of core conformations to be generated. The default be-

140 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

havior is to use a functional form depending on the number of
rotatable bonds. The maxcore parameter could be used to make
a very approximate rough quick pass at docking. See Section 2
of the Glide Technical Notes for details.

corescale
Corescale is a fractional value to scale down the default number
of core conformations kept. See Section 2 of the Glide Technical
Notes.

noringconf
The noringconf keyword disables ring conformation generation.

3.6.12 Subtask Similarity

Request Glide similarity scoring.
Similarity scoring entails assigning a number to each ligand based on its
similarity to one or more of a set of selected active ligands, and optionally
(weighted or calibrated similarity) also its dissimilarity to a set of selected
inactive or decoy ligands. Unlike most quantities calculated in Glide, sim-
ilarity is a ligand-based rather than a structure-based property. That is,
the similarity between two molecules depends only on the types and con-
nectivity of the atoms in those molecules, and not on any details of their
coordinates or conformations, or on anything to do with the receptor. Glide
thus performs similarity scoring, if requested, just once per ligand. It there-
fore adds negligible overhead to a typical Glide database screening job, and
may even speed it up because some ligands can be immediately rejected.
Weight calibration adds a small amount of time to a grid generation job.
The similarity of one ligand (in the test set) to another (in the training set) is
evaluated by comparing the set of all atom pairs in the test ligand to the set
of all atom pairs in the training ligand. Within each ligand, each atom pair
is characterized by the element types, bond orders, and formal charges of the
two atoms, and the number of bonds in the shortest path connecting them.
The similarity is normalized to a number between 0 (the two molecules have
no atom pairs in common) and 1, in which case the molecules have all the
same atoms with the same connectivities, and are thus either identical or
stereoisomers of each other. For weighted similarity, each atom pair in the
training set (actives) is assigned a weight factor, which is higher if the given
pair appears more often in the actives and lower if it appears in the inactives.
To use similarity scoring, put simil subtasks in the grid generation (only for
calibration in weighted similarity) and ligand docking tasks, following the
meta-examples below. Glide will then adjust the Glidescore of each docked
ligand pose by adding a term that depends on the maximum similarity of
that ligand to any of the actives.

• simil weight actives [maestro | sd] afile fname -

inactives [maestro | sd] ifile fname -

Impact 4.0 Command Reference Manual 141

Chapter 3: Perform Simulations

percent val wfile fname [allprint | noprint]

• simil actives [maestro | sd] afile fname -

[wfile fname] -

[penalty val] [lowsim val] -

[highsim val] [reject val] [allprint | noprint]

• simil name spec

The calibration step for weighted similarity is specified by the weight key-
word. This step should be performed in a grid generation job, and all of the
following keywords are required.

actives [maestro | sd] afile fname
Specifies that the active ligands in the training set are in file
fname, which may be in either Maestro or MDL SD format.
Note that at least two active ligands are required for calibration.

inactives [maestro | sd] ifile fname
Specifies the file containing the decoy ligands.

percent val
Roughly specifies the percentage of the inactives to be included
in weight calibration. Rather than using preselected ligands
from the inactives file, each molecule in the file has val percent
probability of being used in weight calibration. Thus, the num-
ber of ligands selected may not exactly match the user’s percent
input. Note that at least one decoy compound is required for
calibration, and that a weight calibration job will exit if it has
not read in at least two active ligand structures, and chosen
at least one inactive. For best results, we recommend making
the inactives file large enough, and the percent probability
high enough, to use about 5 to 15 times as many decoys as ac-
tives. For instance, if the actives file contains 10 ligands and
the inactives file contains 1000, use a percent value between
5.0 and 15.0. Weight calibration may produce a message stating
that it did not converge (more likely the higher the ratio of inac-
tives to actives), but this is not a problem: a valid weights file is
produced in any case, and contains the "best" weights obtained
with the given structures.

wfile fname
Write the weights to the file fname. This will be a text file, with
each line containing a symbolic representation of an atom pair,
followed by the calibrated weight for that pair.

allprint The allprint keyword enables maximum printing of output
from the similarity machinery including output of the similarity
of each docked ligand to each probe molecule. Default printing
outputs only the maximum simiarity of the docked ligand to any
probe molecule.

142 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

noprint The keyword noprint disables printing of output from the sim-
ilarity machinery.

To use similarity scoring in a ligand docking job, all that’s required is the
specification of an actives file. The simil subtask should appear in the
first (setup) DOCK task of the job.

actives [maestro | sd] afile fname
Adjust the Glidescore values for poses of each ligand according
to the similarity of that ligand to those in file fname. This need
not be the same file as was used for weight calibration in the
previous grid generation job, even if the weights generated in
that job are to be used.

wfile fname
Use calibrated similarity, with weights taken from file fname.

penalty val lowsim val highsim val
Parameters for adjusting Glidescores. If the maximum similarity
between a given docked ligand and any ligand in the actives file
is less than lowsim, add the full penalty value to the Glidescores
of all docked poses of that ligand. If the maximum similarity is
greater than highsim, do not adjust the Glidescores for that
ligand. If the maximum similarity is between those two values,
the Glidescore adjustment is determined by a linear ramp be-
tween the maximum penalty value and zero. Note that while
lowsim must be less than or equal to highsim, there are no
other restrictions on their values; in particular, they need not
be between 0.0 and 1.0, even though all similarity scores will be
in that interval. Choosing lowsim less than zero, for instance,
simply means that the maximum penalty value will never be
applied to any ligand. Also, penalty may be negative, in order
to reward ligands that are not similar to any of the actives (to
promote diversity, for instance). The defaults are penalty 6.0
lowsim 0.3 highsim 0.7.

reject val
Skip any ligand whose maximum similarity to any active ligand
is less than val. Must be between 0.0 (accept all ligands) and
1.0 (skip all ligands that are not identical to or stereoisomers of
one of the actives). Default is reject 0.0.

The third form of the simil command, simil name spec , should appear in
the DOCK task for each ligand. (The first for that ligand, with ligand name
spec rather than ligand keep.) It simply indicates that similarity scoring
is to be applied to species spec (the current ligand), using the actives file
(and weights, if any) read in the initial (setup) DOCK task.

Impact 4.0 Command Reference Manual 143

Chapter 3: Perform Simulations

3.6.13 Subtask Screen

Request screening phase of docking calculation.
• screen noscore -

[refine [refstep num] [maxref num] [refgreedy]]

• screen [scbsize val] [skipb num] -

[maxkeep num] [scorecut val] -

[readscreen fname] [writescreen fname] -

[box center -

[lig | read xcent val ycent val zcent val] -

[boxxr val boxyr val boxzr val] -

[ligxr val ligyr val ligzr val]] -

[readcmsite fname] [writecmsite fname] -

[greedy [fraction weight] [readgreed fname] -

[writegreed fname]] -

[refine [refstep num] [maxref num] [refgreedy]]

noscore Do not perform rough-score calculations or screening on the cur-
rent ligand. This keyword is needed when the refine step must
be performed after a loop (either in DICE or internally) has al-
ready done screening on multiple (internally or externally gen-
erated) conformations. It is probably not useful otherwise.

scbsize The grid spacing, in Angstroms, of the rough-score grid. Default
is scbsize 1.0.

skipb n Use only every n’th grid point in each direction as a possible site
for the ligand center. Thus skipb 2, the default uses one-eighth
of all grid points.

maxkeep Maximum number of poses to pass to the grid energy calculation.
Default is maxkeep 1, but it’s generally not useful to leave it at
that. In our tests, we have found that a few hundred poses, over
multiple conformations, are usually enough to find one or more
good docked poses, at least if greedy scoring and pose refinement
are employed.

scorecut Rough-score cutoff for keeping poses. When accumulating poses
to pass to the grid energy calculations (after they have passed
all other screening tests), a given pose survives if its rough score
is within scorecut of the best pose accumulated so far. Default
is scorecut 100.0.

readscreen
writescreen

Read/write the rough-score grids (and possibly other informa-
tion: see readcmsite below) from/to the indicated file. The file
specified in a readscreen should have been written as the result
of a writescreen in a previous run with the same receptor.

144 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

writecmsite
Write to disk information about possible grid sites for the ligand
center, for those sites that pass an initial (ligand-independent)
filter. This is generally a much smaller set than the entire box
where the rough-score grid is defined, so Glide calculates it once
for a given receptor and store the list on disk for subsequent use
with different ligands. If writecmsite is not specified, this in-
formation is appended to the file specified in writescreen. Dif-
ferent box specifications, or different skipb specifications, result
in different lists of sites, so we provide the option of writing these
to separate files, without repeating the much larger rough-score
grids in the writescreen file, which are independent of skipb.

box Specifies the rectangular box where the rough-score function is
defined (enclosing box), and/or narrower limits on the position
of the ligand center (bounding box). Default for the enclosing
box is that specified in the receptor subtask for the energy
grids, either by the active and buffer specifications or by a
box specification in that subtask. The box center and boxxr
specifications are as in the receptor subtask, with the addi-
tional option box center lig to put the center of the box at
the coordinates of the ligand center in the input file. If the
input is a known co-crystallized complex, box center lig bi-
ases the calculation in favor of the known correct answer, and
should not be used except for testing. The parameters ligxr,
ligyr, and ligzr give the size of the search space for posi-
tions of the ligand center. That is, the ligand center may be
placed at grid points with x-coordinates between approximately
xcent−ligxr/2 and xcent+ligxr/2, and similarly for y and z.
In general, the bounding box should be much smaller than the
enclosing box, because grid points near the edges of the enclos-
ing box will have many ligand atoms outside the box, and thus
be rejected as possible ligand center positions. The Maestro user
interface determines the size of the enclosing box (purple outline
on the Maestro display) by adding to the user-specified size of
the bounding box (green) a buffer big enough to fit ligands up
to a user-specified size, when the ligand center is at the edges or
corners of the bounding box. The limits on the ligand center po-
sition are incorporated in the grid file written by writescreen
(or writecmsite), so box ... ligxr ... is unnecessary when
reading existing grid files from disk readscreen.

greedy Specifies the greedy scoring algorithm, as described above.
fraction weight specifies that the combination to use is weight
times the score at the best surrounding grid point, plus (1 −
weight) times the original score at the central point. The de-

Impact 4.0 Command Reference Manual 145

Chapter 3: Perform Simulations

fault is fraction 0.33, and acceptable values are between 0
and 1. readgreed and writegreed specify reading/writing the
greedy grid (the linear combination at each point, not the best
surrounding score) from/to the indicated file.

refine Specifies the pose refinement step of the screening algorithm.
This involves moving each pose from its original central grid
point to a 3 x 3 cube of surrounding grid points. Each point
is either zero or refstep grid points away from the central
one in each of the positive or negative x, y, and z directions,
where refstep must be smaller than skipb (so as not to get
to a position already tested for the ligand center), and the de-
fault is refstep 1. The algorithm evaluates the score of the
pose centered at each of the 27 grid points (in the same orien-
tation as the original), and chooses the best (lowest) score to
pass to energy minimization. The refinement step improves the
scores of poses that are close to favorable ones that were ini-
tially skipped because of the skipb specification, and thus often
decreases the number of poses that need to be passed to energy
minimization in order to assure that good ones are included. To
decrease the number actually passed, specify maxref less than
maxkeep. Since pose refinement and greedy scoring are both
intended to find good scores that would otherwise be missed
because of skipb, the default is for refinement to evaluate the
27 poses using the original (non-greedy) score, even if the rest
of the screening process used the greedy score. The keyword
refgreed specifies that refinement should use greedy scoring (if
the greedy-score grid is available), but we have not found any
advantage in doing this, and it runs the risk of increasing the
rate of false positives.

3.6.14 Subtask Minimize

Request energy minimization phase of docking calculation.
• minimize flex ftol val dielco val -

[maxhard val] [maxsoft [val] [sampling val] -

[highacc [ncycle val]]

flex Indicates that ligand torsional angles are to be varied during
minimization.

ftol Convergence criterion for the minimizer, expressed as a bound
on the relative energy change at the last iteration. The default
is ftol 1.0e-4.

dielco The dielectric constant, or coefficient of the interatomic dis-
tance in the distance-dependent dielectric function, to be used
in calculating electrostatic energies. Thus if rdiel is specified

146 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

in the receptor subtask, and dielco 2.0 is specified here, the
dielectric used is 2r. The default is dielco 1.0, but we recom-
mend (and the Maestro interface writes) dielco 2.0, along with
rdiel, to weaken long-range electrostatic interactions.

sampling The value of this keyword controls the sampling of ligand tor-
sions, performed after minimization and before final scoring.
Lower values indicate more sampling. The default, sampling
-1, does the most sampling, and sampling 10 does no post-
minimization sampling. In general, more sampling results in
better-docked and better-scoring poses, at the cost of increased
computation time.

maxhard The maximum number of minimization iterations on the hard
Coulomb-vdW surface, default is 50.

maxsoft The maximum number of minimization iterations on the soft
Coulomb-vdW surface, default is 100.

highacc This keyword activates Glide’s extra precision mode, it directly
corresponds to choosing “Extra Precision” in the Maestro Glide
panel “Choose Docking Mode” pull-down selector.

ncycle val
This keyword is only available when highacc is also used, and
sets the number of times the ligands are recycled through the
docking process. This additional effort greatly improves Glide’s
ability to sample all the docking positions of the ligand in the
receptor grid. The default value is 5.

3.6.15 Subtask Final

Specify final scoring function.
• final [glidescore|noglidescore] [read fname]

The final subtask specifies the scoring function to be used for final eval-
uation of the docking affinity of ligand poses. The recommended scoring
function is Schrödinger’s proprietary GlideScore (tm). final glidescore
should appear in the setup DOCK task, and in cases where receptor infor-
mation is to be read from disk, the keyword-value pair read fname should
appear in the DOCK tasks that do the scoring, to indicate the file that con-
tains receptor information needed for calculating GlideScore. In general, the
name of this file will be gridjob.csc, where gridjob is the name of the job
in which receptor grids were created.

3.6.16 Subtask Scoring
Filters and parameters for final scoring.

scoring ecvdw val hbfilt val metalfilt val -

hbpenal val

Impact 4.0 Command Reference Manual 147

Chapter 3: Perform Simulations

The scoring subtask is useful for filtering out ligands, structures, or poses
that might be assigned favorable GlideScore values, but are unacceptable
for other reasons. The filters consist of maximum allowed values for the
Coulomb plus van der Waals interaction energy calculated by grid in-
terpolation (ecvdw), or the hydrogen-bonding (hbfilt) or metal-binding
(metalfilt) terms in GlideScore. Poses that fail these filters are either
skipped or assigned specific unfavorable GlideScore values such as 10000.0.
Alternatively, the user may specify undemanding values (such as 0.0) for the
filters in the Glide run, and impose more stringent filters in postprocessing,
by running the glide_sort script, with the filter values among its argu-
ments, on Glide’s output structure files. This script allows not only filtering
with a variety of criteria, but also re-sorting according to user-specified scor-
ing criteria, without rerunning the Glide job.
The hbpenal parameter is not a filter, but rather the coefficient (default 3.0)
of a term in GlideScore that penalizes poses in which potential hydrogen-
bonding atoms are buried next to non-polar atoms in the ligand-receptor
interface.

3.6.17 Subtask Report

Write final ligand structures and scores to disk, and/or copy coordinates
back to top-level Impact arrays.

• report setup [by glidescore | by energy] -

[nreport num [cutoff val]] [norecep | recep | nil] -

[external file fname] -

[maxperlig num] rmspose val delpose val

• report collect rmspose val delpose val

• report rmspose val delpose val -

write filename fname

• report keep [current | reference | best]

The report subtasks specify how Glide is to select ligands and poses for
output, and how to sort that output. In addition, the keep keyword specifies
the ligand structure to copy internally, for use by subsequent (non-Glide)
Impact tasks.

setup This version of the report subtask, with the following specifica-
tions, is required in the “setup” DOCK task, in order to allocate
memory for the data to be saved and reported.

by glidescore
by energy Indicates whether the poses written to external files

are to be those with the best nreport GlideScore or
the best nreport grid energies (Coul + vdW). (by
score, for the best nreport rough scores, is also
available but not recommended.) The poses will be
sorted in order of the selected scoring function.

148 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

nreport The maximum number of poses to be written to
external files. The actual number written may be
less than this either because fewer poses survive the
rough-score or final scoring filters or because of the
cutoff parameter.

cutoff Saves for output only those poses whose scores or en-
ergies are less than the best (lowest) plus the cutoff
value.

norecep
recep Indicates whether the output structure file (in Mae-

stro format) should include the receptor structure
or not. The default is to include it (recep). If it
is included, the file is suitable for on-screen analysis
using the Glide Pose Viewer; otherwise (norecep),
the file is suitable for use as ligand input in a sub-
sequent Glide job. (Actually, files that do include
the receptor may also be used in this way, simply
by using the gotostruct keyword upon reading the
file, to skip the receptor structure (which is always
the first structure in the file).)

external file
Store qualifying poses from each ligand, as it is pro-
cessed, in the specified file. The resulting file will
in general be larger than the final output, as poses
saved from one ligand may ultimately be displaced
by better-scoring ones from subsequent ligands. But
this method saves both CPU time and system mem-
ory, and also provides a “checkpoint” file of results
so far, in case the job fails in the middle of the run.
Unfortunately, external file storage does not work
for “score in place” jobs, or if the confgen option
(flexible docking of internally generated conforma-
tions) is not selected. We strongly recommend its
use in all other cases.

maxperlig
Maximum number of poses to save for each distinct
ligand molecule. Maxperlig 1 is particularly appro-
priate for relatively rapid filtering of a large ligand
database. The best-scoring ligands from such a run
may then be used as input to a run with larger
maxperlig, to get finer detail of binding modes, etc.,
of the top ligands.

Impact 4.0 Command Reference Manual 149

Chapter 3: Perform Simulations

rmspose
delpose Criteria for eliminating “duplicate” poses, i.e., those

that are too similar for both to be worth saving.
Two poses are considered distinct if they satisfy ei-
ther the RMS deviation or the maximum deviation
criterion. The recommended values are rmspose
0.5 delpose 1.3. These must be specified in ev-
ery report subtask.

collect Store the data for poses to be saved from the current ligand.
This version of the report subtask typically appears in a loop
over ligand (and/or conformer) structures. If external file
was specified with report setup, the qualifying poses are saved
to the external file; otherwise, their scores and identifiers, and in-
formation needed for reconstructing their structures, are stored
in memory.

write filename fname
Write the saved poses, and a summary report, to disk, using
fname as a base for the file names. The report will be writ-
ten to fname.rept. If the receptor structure is included, it and
the ligand pose structures will be written to fname pv.mae (pv
for Pose Viewer); if not, the ligand structures will be written
to fname lib.mae (a “library” of ligand structures for future
use). If an “intermediate” external file was specified in the
report setup subtask, Glide internally runs the glide_sort
script (with filters as specified in the scoring subtask, and de-
faults for other arguments) on the intermediate file to get the
final output. For postprocessing, the user can run glide_sort
on either the intermediate file or the final output file.

keep Specifies which coordinates to copy back to the main Impact
coordinate arrays, for subsequent Impact tasks.

current Do nothing. This maintains the Impact coordinate
arrays as they were upon input to the current DOCK
task.

reference
Copy the reference conformation (in its input pose)
back to the Impact arrays.

best Copy the best pose (by GlideScore or grid energy, as
specified with report by) back to the Impact arrays.

3.6.18 Subtask Run

Run docking calculation as specified in previous subtasks.

150 Impact 4.0 Command Reference Manual

Chapter 3: Perform Simulations

• run

Run the calculation. No keywords because they’re all specified in the previ-
ous subtasks.

3.6.19 Results printed to Impact output

In addition to the structural output and summary reports described above
(Maestro format structures in ‘*.ext’ and either ‘*lib.mae’ or ‘*pv.mae’;
summary reports in either ‘*.rept’ or ‘*.scor’), Glide reports results for
each ligand it processes to the usual Impact output, namely “standard out-
put” (typically redirected to file ‘jobname.log’) and the main output file
(typically ‘jobname.out’) specified in the write command at the top of the
Impact input file. For each ligand processed, this output includes informa-
tion on the best pose found according to each of several scoring criteria.

DOCKING RESULTS FOR LIGAND 1 (Atropine)

Best Glidescore=-6.24 E=-26.53 Eint=5.56, pose 277, conf 2, lig 1; rmsd=66.161

Best Emodel=-57.10 E=-43.85 Eint=2.10 Glidescore=-5.42, pose 16, conf 3, lig 1; rmsd=61.597

Closest rmsd=61.572, pose 57, conf 3, lig 1; Glidescore=-2.48 E=-43.70 Eint=2.02

Lowest Efinal=-43.99 Eint=1.99 Glidescore=-2.23, pose 17, conf 3, lig 1; rmsd=61.596

In each of the above output lines, E or Efinal is the minimized, grid-
interpolated Coulomb + vdW interaction energy between the receptor and
the ligand in the particular pose; Eint is the internal (torsional) energy for
the particular Glide-generated conformation of the ligand, and Emodel is the
combination of E and GlideScore that Glide uses to rank poses of the same
ligand. Rmsd is the heavy-atom RMS deviation between the particular pose
and the reference ligand, and is reported only for the first ligand processed,
and only if it is the same molecule as the reference.
In rigid docking runs, Glide groups together conformers of the same ligand
that appear consecutively among its input structures. In such cases, the
DOCKING RESULTS above are reported for the entire group, with an indication
that all are conformers of one molecule.

DOCKING RESULTS FOR LIGANDS 57 -- 58 (Confs of p38-pyrimidone0003)

Best Glidescore=10000.00 E=329.44, pose 1, conf 1, lig 57

Lowest Efinal=237.13 Glidescore=10000.00, from pose 9, conf 2, lig 58

Best Emodel=10000.00 E=237.13 Glidescore=10000.00 from pose 9, conf 2, lig 58

The values of 10000.00 in the above table indicate that Glidescore and
Emodel were not evaluated for those poses, because they did not pass the
filters specified in the scoring subtask. Note that lig 57 and lig 58, and
all ligand numbers reported in Glide output, refer to the position of the
molecule in the user’s input structure file. This correspondence is main-
tained not only for multiple conformers as above, but even if Glide cannot
process some of the input structures. In other words, if the 56th structure
in the input is skipped because it’s too big, has unrecognized atoms, etc.,
the next structure will still be reported as ligand 57. Also, since this job
did not generate ligand conformations internally, the designations conf 1,
lig 57 and conf 2, lig 58 are actually redundant: the only conformations

Impact 4.0 Command Reference Manual 151

Chapter 3: Perform Simulations

analyzed are those that were in the input, so lig 57 is the first conformation
of this molecule, and lig 58 is the second.
In addition to the above output of “best” poses, Glide will print tables of
poses processed from each ligand, after the rough-score and energy mini-
mization steps, if the verbosity parameter is set higher than 1. Since this
output can run to tens or hundreds of poses per ligand, we strongly recom-
mend against setting verbosity that high in jobs with many ligands, except
for testing or debugging purposes.

152 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

4 Analysis Routines

This chapter describes tasks for various analysis routines.

4.1 Task Analysis
Extract information about the molecular structure and energy. This task
may be called at any time, provided the structural arrays are defined. Energy
must be called after coordinates are defined and energy parameters are de-
fined in setmodel. A number of example input files are included where
analysis is used, for example

geometry (see Section C.2.9 [Geometry Analysis (example)], page 259).

energy (see Section C.2.8 [Energy Analysis (example)], page 258).

rms (see Section C.3.1 [RMS dev (example)], page 261).

surface area and solvation energy
(see Section C.3.6 [Area vs. Solv Energy (example)], page 294).

In addition to the keywords listed below, the subtasks of task analysis can
take the optional keyword echoon or echooff. This controls the printing of
certain output. The default is to print it (echoon), unless echooff has been
specified either in this task or previously at the task level.

4.1.1 Subtask Energy

Calculate a potential energy function (as defined by setmodel) and print
out detailed information about the energy terms. For examples of use see
Section C.2.8 [Energy Analysis (example)], page 258.

• energy allterms [solvation [of name species_one] [by name species_two] -

[encut value]] options

• energy [bond | angle | phi | nb14 | noe | ljel | hbond] -

[solvation [of name species_one] [by name species_two] [encut value]] -

options

where options is described by the following metaexamples:
• highest num [file fname]

• higher encut value [file fname]

• res-res one name species -

[ngroup ngps (resnumber num) repeated ngps times]

• res-res between name species_one name species_two

[ngroup ngps name species (resnumber num) repeated ngps times]

• file input_file

4.1.1.1 Energy terms
Energy terms to be analyzed.

Impact 4.0 Command Reference Manual 153

Chapter 4: Analysis Routines

• energy [allterms | specific_term]

Allterms specifies energy analysis for all energy terms. The other options
are:

bond

angle

phi

nb14

noe

ljel

hbond

Note that the appropriate output file should be specified as soon as is feasible.

highest The number of energy terms to be printed, e.g., the “highest”
10 energy terms (violations). At most 50 terms of each type
(bonds, angles, etc.) can be printed; requesting more than 50
will have the same result as requesting 50. Of course, if there
are only 33 bonds in the molecule, only 33 bond terms will be
printed even if you specify “highest 50.”

higher Flag to print out all energy terms (violations) higher then encut.

encut Energy cutoff value.

res-res Print out the energy between all residues for a species.

one Option available only with res-res subtask. Only
one species used.

between Print data between species specified as follows.
• between name spec resnum num to num

If the residues are to be grouped together, then print out data
in terms of groups of residues as opposed to residue by residue.
The keyword ngroup signals that starting and final residues of
a group must be specified. Several groups may be specified in
this way.
‘ngroup resnumber num to num ’

4.1.1.2 Solvation

Calculate the solvation energy for each atom in a given species.

of name The name of the species for which the solvation energy is to be
calculated (the solute).

by name The name of the species to use as the solvent. The results are
stored in the internal table ’hydration’ and may be used in ad-
vanced input scripting language (DICE) commands.

scutoff The cutoff distance . . .

Solute and solvent must be different species.

154 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

4.1.1.3 Analyze

Analyze the hydrogen bond energy by recalculating the electrostatics and
the 10–12 term so that an accurate value for a hydrogen bond energy is
calculated (including the angular dependence). Distance (hbcut) and angle
(hbangcut) cutoffs may be specified (defaults are 4.0 Å and 120.0 degrees).

• energy analyze hbond [hbcut value] [hbangcut value]

4.1.2 Subtask Qmme (QMMM)

Single point QM/MM energies can be obtained using task ANALYSIS with
the subtask qmme, e.g.:

ANALYSIS

qmme

QUIT

qmme requests a QM/MM energy calculation. QSite jobs launched from
Maestro will evaluate the MM energy regardless of whether or not it is
a minimization job, and therefore this keyword is not needed for Maestro
created input files.

4.1.3 Subtask Measure

Calculate internal coordinates. The measure subtask is unusual in being
terminated with the keyword quit, making it somewhat like a task. As with
the setpotential subtask of the setmodel task, which is also terminated
by quit (see Section 2.3.4 [Subtask Setmodel], page 42), this means that
each monitor or calc option must be on its own line. An example of the
syntax is as follows.

ANALYSIS

measure name spec [results file fname]

calc [options]

quit

QUIT

Tha default option is to use x, y, z coordinates that already exist (previously
defined by create, montecarlo, dynamics, etc.) and to calculate only those
internal coordinates explicity user-defined.
The options available with this subtask are as follows.

• monitor nskip number statistics

• calc [allinternals | sidechain] resnumber resn atomname atna [pdb file fname]

• calc bond (resnumber resn atomname atna) two times [pdb file fname]

• calc angle (resnumber resn atomname atna) three times [pdb file fname]

• calc torsion (resnumber resn atomname atna) four times [pdb file fname]

1. Arbitrary user-defined bonds, angles, or torsions are calculated between
any atoms (whether or not they follow the tree structure or are bonded).

2. All internal coordinates as defined in create (the tree structure) are
calculated.

Impact 4.0 Command Reference Manual 155

Chapter 4: Analysis Routines

These coordinates are calculated from atomic positions already existing
within an Impact job, or from a coordinate set read in from an external
PDB file.

4.1.3.1 Calc

Flag to calculate internal coordinates. If the calc option is chosen, multiple
bonds, angles, and torsions can be calculated within the same command
line. However one must quit from a measure session and call it again before
calc all or calc sidechain.
The calc all exactly calculates the internal coordinates as defined by the
tree, thus no improper dihedral angles will be calculated, and some desired
angles may also be missing.
When defining torsions be sure the order of the four atoms is the same as
the order used in the parameter file to define the desired torsional constant.
Else, the dihedral angles calculated will be for a different angle. (e.g. phi
(1, 2, 3, 4) is different from phi (1, 2, 4, 3) for atoms 1, 2, 3 and 4).

allinternals
calculate a list of all internal coordinates defined by the tree
structure in create.

bond Calculates the distance between two atoms specified by two sets
of parameters: residue number; atom name. Atoms need not be
bonded.

angle Calculates the angle between three atoms specified by three sets
of residue number; atom name parameters. Atoms need not be
bonded or follow tree structure.

torsion Calculates the torsion angle between four atoms specified by four
sets of residue number; atom name parameters. Atoms need not
be bonded or follow tree structure.

sidechain
Calculates all torsions along side chain of the residue specified
by parameter resn, torsions follow tree structure.

results file
Specifies that an output file is being given for these results. If
this is not specified, the results are written to the main output
file.

4.1.3.2 Monitor

Monitor a series of internal coordinate measurements, instead of only calcu-
lating one set of internals.

nskip Indicates that every nskipth configuration will be measured.

156 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

statistics
Calculate the average and r.m.s. for each internal coordinate
that is monitored.

4.1.4 Subtask NOE

This option will print distances between H atoms that are between upper
and lower bounds given. Intra-residue interactions are not considered. These
distances can be used to simulate those that would be expected to give NOE
peaks in an NMR experiment. There is an option to assume all prochiral
assignments can be made. This subtask can be used to generate a prelimi-
nary constraint file that can be used in other simulations or to compare two
coordinate sets.

• noe name spec ucut value lcut value [gen file fname] -

[lcut value] [ucut value] [plus value] [minus

value] [prokiral] [pdb file fname]

ucut Upper distance limit to consider for possible NOE peak. The
default value is 4 Å.

lcut Lower distance limit to consider for a possible NOE peak. The
default value is 1.2 Å.

gen Flag to indicate that a constraint file is to be generated from
the above list.

file Name of constraint file.

plus Amount added to calculated distance to generate upper bound.

minus Amount subtracted from calculated distance to generate lower
bound.

prokiral Make all prochiral assignments

pdb Coordinates may come from file fname

4.1.5 Subtask Hbond
Print distances between H-bonding donor and acceptor atoms that are be-
tween the distance cutl and cutu. H-bond angle criteria are not considered.
For DNA this option will only print out H-bonds between the bases.

• hbond name spec cutu value cutl value [gen file fname] -

[pdb file fname]

cutu Upper distance limit to consider for a possible hbond. The de-
fault value, if this parameter is not specified, is 4.0 Å.

cutl Lower distance limit to consider for a possible hbond. The de-
fault value, if this parameter is not specified, is 1.2 Å.

gen file Flag to indicate that a constraint file is to be generated from
the above list.

Impact 4.0 Command Reference Manual 157

Chapter 4: Analysis Routines

plus Real amount added to calculated distance to generate upper
bound.

minus Real amount subtracted from calculated distance to generate
lower bound.

pdb Coordinates may come from this PDB file.

4.1.6 Subtask Neighbor

This option will print distances between atoms that would be in “close con-
tact” as defined by the user.

• neighbor [name spec] [resn num] [atna atom_name] -

[cutu val] [cutl val] [rsep num]

resn Residue number atom atna is found in.

atna Atom name of atom to search for neighbors.

rsep Minimum residue separation
0 will print neighbors in the same residue
1 will print neighbors in adjacent residues, etc.

cutu Upper distance limit to consider for a possible close contact.
The default value, if this parameter is not specified, is 4.0 Å.

cutl Lower distance limit to consider for a possible close contact. The
default value, if this parameter is not specified, is 1.2 Å.

4.1.7 Subtask Rms

Calculate the RMS deviation in atomic positions between two trajectory
frames or two conformations of a molecule according to the algorithm of Ferro
& Hermans (Acta Cryst. 1977 A33, p. 345). The structural information may
be passed from task create, or a PDB file can be read in directly. Residue
names, atom names etc. will be either passed from another task or taken
from the first PDB file read.
If the internal coordinates and connectivity are not passed from another
task, pdb1 must be the first command argument. Otherwise, the command
arguments may be in any order.
Caution: rms does not work with structures read via type auto, e.g., Mae-
stro files.

• rms [name species1_name] [pdb1 file fname] -

[name species2_name] [pdb2 file fname] -

[compare [all | same | read [bone] | bone]] [hand rev] -

[nseg nrng (fres num lres num) repeated nrng times] [print none]

pdb1 Name of PDB file if internal information is not being passed.
System size will be determined by this PDB file, or data passed
from another Impact task. Use of this parameter allows the task

158 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

to be used independently of other Impact tasks by reading in a
PDB file directly.

pdb2 Name of PDB file to compare. This file must have the same
residue names, atom names etc., as the original data. Caution:
any atoms in this file, not present in pdb1, will be omitted in
the calculations.

compare

all First system. Atoms must be in the same order, and
both systems must have the same total number of
atoms. This option is the most efficient, however no
checks are made and results will be strange if the
above conditions are not met.

same To compare each atom in the second system that
has a corresponding atom in the first system.

read To read in a list of residues to compare, using the
nseg ... format shown in the command syntax.

bone To compare backbone atoms only (N, Cα, C, O).

hand rev To compare systems with handedness reversed.

nseg Number of residue ranges to be read in and compared, with read
option. The ranges are specified by a list of fres num lres num
pairs indicating the first and last residues in each range.

bone When used with read option, allows for the comparison of back-
bone only of residues read in. Note that the keyword bone must
come AFTER read, or else it will override read and lead to
backbone comparison for all residues.

print none
Turn off all printing (none is required) but the final rms for all
segments specified

4.1.8 Subtask Surface

This option allows the user to calculate the solvent accessible surface area
of a molecule as defined by Lee and Richards (J. Mol. Biol. (1971), 55, p.
379). The default resolution for the calculation is 0.25 Å.

• surf name spec [rprobe value] [output fname] -

[read fname] type [noh | h] [noprint]

output Directs the output from the program to a file specified by the
user. Otherwise, the output will be directed to the main output
file.

rprobe Changes the probe radius—default is 1.4 Å.

Impact 4.0 Command Reference Manual 159

Chapter 4: Analysis Routines

type This option directs the program as to whether or not to per-
form the calculation using hydrogen atoms (default) or NOH—
without hydrogen atoms (extended atoms). The results from
these two methods are similar, but often the literature values
may reflect only one of the methods.

noprint Suppresses printing of surface area per atom.

4.1.9 Subtask Tormap

Produce data that can be used to plot 1- or 2-dimensional energy contour
maps. Both sidechain and main-chain dihedral angles may be rotated inde-
pendently or in any combination desired. The energies may be examined in
several different ways. The output meta file contains contour maps of the tor-
sional energy and is formatted into separate sections that correspond, e.g., to
(1) the total potential energy, (2) the torsional energy, (3) the Lennard-Jones
energy, (4) the electrostatic energy, and (5) the hydrogen bonding energy.
(Please Note: This depends on the potential chosen in setpotential). The
torsional angle term energies are also printed. An example of the use of
tormap is shown in Section C.3.2 [Torsion map (example)], page 261.
Tormap type (1d or 2d) must always be specified!

• tormap 2d [name spec] -

tor1 res num [main | chi] angle_type [atom atom_name] init num -

final num incr num -

tor2 res num [main | chi] angle_type [atom atom_name] init num -

final num incr num -

plot file fname title a_title contour 5 auto

• tormap 1d name spec -

tor1 res num [chi | main] angle_type init num final num incr num *

1d Used to specify the type of map, i.e., whether an energy map
will be 1-dimensional.

2d For a 2-dimensional map.

tor1 Specifies the first torsion angle. tor1 and tor2 specify which
torsion angle parameters are to be used for each specific torsion
angle. (Necessary for doing sidechain/main-chain maps).

tor2 Specifies the second torsion angle.

res Residue number of interest

chi Specifies that the dihedral angle is a side-chain. The associated
atom type indicates which side chain angle to vary

main Specifies the backbone dihedral angle of interest. Values: φ = 1,
ψ = 2, ω = 3, other=4.

atom Specifies the atom name that defines the main chain torsion of
interest when angle type 4 has been chosen. The torsion angle

160 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

varied is determined by tracing back the tree structure along the
main chain.

initial Initial value of interest (default = 0◦)

final Final value of interest (default = 360◦)

incr Increment by which the angle is rotated (default = 5◦).

Caution: The maximum number of steps is limited to the final-initial values
(with incr = 1), however the number of steps should really not exceed 73
to maintain computational efficiency.
Example:

tormap 2d name dileu -

tor1 res 2 main 1 init 0 final 360 incr 5* -

tor2 res 2 chi 2 init 0 final 360 incr 10* -

plot file enertor.out title phi vs chi1 in dileu * -

contour 5 auto

tormap 1d name diphe -

tor1 res 2 chi 2 init 0 final 180 incr 5*

4.1.10 Subtask Violation
Analyze the residual violations of a distance constraint set. This option can
only be invoked after reading in a constraint set through setpotential.

• violation name spec cutoff num file fname

name Molecular species name.

file Output file name.

cutoff Number of violations to be printed.

4.1.11 Subtask Potfield

This subtask produces and writes arrays of either electrostatic potential or
electrostatic force-fields at a 3-dimensional grid of points, epot(x, y, z) (po-
tential), or xfield(x, y, z), yfield(x, y, z), or zfield(x, y, z). These are
plotted or written for use with graphics routines. See Section C.3.3 [Trajec-
tory (example)], page 266 for an example where this subtask is used.
Caution: Subtask potfield, like subtask measure, is terminated by the
keyword quit. The first occurrence of quit exits from the potfield subtask.
A second occurrence of quit leaves the analysis task.

4.1.11.1 Grid

This keyword sets up the x, y, z grid points at which the potential and field
are to be calculated. (It also finds the desired origin). The grid origin (point
0, 0, 0) is at the center-of-mass of the entire system: a species, a residue, or
an atom according to the specification.

Impact 4.0 Command Reference Manual 161

Chapter 4: Analysis Routines

• grid [center name spec [resn residue [atomname atna] | nil]] -

[boxsiz val] [stepsiz val] chgcut val

Boxsize is the size of the cubical box of grid points, with a default of 4.0 Å.
Stepsize is the distance in Angstroms between adjacent grid points, with a
default of 0.1 Å.
Chgcut is the radius in Angstroms from the origin for charge cutoff; only
charges within chgcut contribute to the potential and field calculated at
the grid points (molecular or atomic cutoffs as defined in setmodel). The
default value is 5.0 Å.

4.1.11.2 Include

This keyword indicates which species are to be included in the calculation,
i.e. the charges of the included species add to the electrostatic potential and
field if they are within the radius chgcut of the origin. (If no species are
included, then the resultant potential is everywhere 0.0). If all species are
included then the keyword all is used, and individual species are specified
as name species name multiple times.

• include [all | (name spec) repeat up to all species]

4.1.11.3 Read

This optional keyword allows molecular coordinates to be read in from an
external file; by default the molecular coordinates are the internal x, y, z
values at the time potfield is called. It is possible to read a trajectory
file containing many coordinate sets, in which case the output potential and
field will be averaged over all the sets. For a description of the trajectory-
info input options, see the syntax of the input trajectories command in
Section 4.2.1 [Input (mdanalysis)], page 165.

• read trajectory-info

4.1.11.4 Rotate

This optional keyword allows molecular coordinates to be rotated so that
the three reference atoms are in the yz plane. The reference atoms defining
the rotation are expected to be in the same residue, and are specified by
atom followed by three atom names, which must be the same as defined in
the database . The default is to use atom numbers 1, 2 and 3. Rotation
should be performed before run.

• rotate resn residue atom atomname1 atomname2 atomname3

atom atomname1 defines the atom number at the plot origin; it should
be the same atom that was defined by grid center to be the
local origin. atomname2 defines the atom number along the z-
axis; i.e., r2 − r1 defines the z axis; and atomname3 defines the
atom number for the yz-plane, i.e., (r3 − r1)× (r2 − r1) defines
the x-axis, thus atom positions r1, r2, r3 are on the yz-plane.

162 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

4.1.11.5 Run

This keyword actually causes the calculations to be performed. The keyword
epot causes calculation of the potential; this is the default. Efield causes
calculation of fields (not done by default.)

• run [epot | efield]

4.1.11.6 Analysis

This keyword calculates the max, min, mean and rms values for the previ-
ously calculated data points. Note that this keyword must come after run
or else the results will be meaningless.

• analysis

4.1.11.7 Plot

This keyword selects a grid slice for a 2-dimensional contour plot. The
commands for plotting must all be input on the same line (see Appendix B
[Plot], page 227).

• plot [epot | xfield | yfield | zfield] -

make [x | y | z] = val -

title string * xlabel string * ylabel string * -

contour contour_info

epot Plot the coulombic potential;

xfield
yfield
zfield Plot the gradient of the potential (electric field) in the x, y, and

z directions respectively;

make chooses the axis that is perpendicular to the plot slice, and its
value (cc) at the intersection with the plane, as in ‘make y =
2.0’, which means an xz slice that passes through the y axis
2.0 Å from the origin. The default is 0, i.e., the center of the
box.

Example:
• plot epot make x = 0.0

• plot xfield make y = -1.5 -

title this is an electrostatic field plot * -

file xzcontour.ts level3d theta 65.0 phi 60.0

4.1.11.8 Grwr

This keyword is used to give the filename for the output of grid points, and
causes the full grid to be output where unformatted is the default. Note
that this causes the full 3-dimensional box of electrostatic (and x, y, z)
datapoints to be written to the external file so formatted files will usually
be very long. In contrast the writ keyword in the plot subtask causes only

Impact 4.0 Command Reference Manual 163

Chapter 4: Analysis Routines

the 2-dimensional slice of datapoints that are being plotted to be written to
the external file.

• grwr file fname [formatted | unformatted | nil]

4.1.11.9 Grrd

This keyword causes the full grid of data to be read in where the default
is unformatted. Note that data on boxsize, gridsize, etc., that are read
from the infile.dat file take precedence over the equivalent keywords in the
main input file.

• grrd file fname [formatted | unformatted | nil]

164 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

4.2 Task Mdanalysis
Carry out a standard analysis of the trajectory produced by a molecular
dynamics simulation.1 The analysis may be one of two types, static and
dynamic. An example of this task is shown in Section C.3.4 [MDanalysis
(example)], page 275.
• Static analysis includes the site-site radial distribution function (rdf

or g(r)), the binding energy distribution function (bed), the angular
distribution function (adf) and the hydrogen bond distribution function
(hbd).

• Dynamic analysis includes the mean square displacement (msd) for sol-
vent, the velocity autocorrelation function (vcf), the angular velocity
autocorrelation function (avcf), and the mean squared displacements
(msqdelr) about the average position for each solute atom. The power
spectra of vcf and avcf are also calculated.

4.2.1 Subtask Input

Control the reading of the trajectory files (how many records, how often,
etc.) and set some options used in the analysis. The following qualifiers
control the reading of the trajectory files, and they must all be given in a
single command line.

• input trajectories nfiles number fnames file fname file fname... -

[coordinates | and velocities | nil] [every number] [maxrec number] -

[nskip number] [msteps number] [box | nobox | nil] -

[recordno] [beginat number] [to number] deltat value -

other_qualifiers_for_input

4.2.1.1 Trajectories

Read nfiles trajectory files, the list of files begun by fnames, and each
filename preceded by file. Also describes how the trajectories are to be
read. Note that if neither the recordno or beginat option is selected then
all records are read sequentially from the first record of the first file.

nfiles Number of trajectory files to read.

fnames Begin the list of names of trajectory files.

maxrec Maximum number of trajectory records (frames) to be read. The
reading of records will continue until maxrec records have been
read or the end of file occurs, whichever comes first. Note that
this need not be equal to the actual number of frames in the
trajectory file.

nskip Number of steps to be skipped over (the trajectory file will be
sampled every nskip steps).

1 See Section 3.2 [Dynamics], page 79.

Impact 4.0 Command Reference Manual 165

Chapter 4: Analysis Routines

coordinates
[and velocities] [every] This option controls whether the
(cartesian components of the) velocities are read (see Section 3.2
[Dynamics], page 79). The number after every should corre-
spond to the way the trajectory file was written, that is, every
numberth step of the original simulation.

deltat Time step in picoseconds for each step of the MD run.

box, nobox
Specify whether the trajectory file contains dimensions of the
box for each input frame. These dimensions are needed when
processing constant-pressure simulations.

recordno The record number from each trajectory file to be read. If this
option is set to zero (or not read) then reading of blocks of files
may be specified with the next two qualifiers. This option allows
only 1 record per file to be read.

beginat Beginning record to read from each file.

to End at this record in each file. If the to option is not specified
then maxrec is used as the last record to be read (this would
include all files). nskip is still active when the beginat option
is used.

4.2.1.2 Other qualifiers for input

The following qualifiers are passed as options to the analysis routines.

rup Upper bound of distance r for radial distribution function g(r).

rlow Lowerbound of distance r for radial distribution function g(r).

ngridr Number of grid points in distance r for radial distribution func-
tion g(r).

eup Upper bound of energy for binding energy distribution bed(E).

elow Lower bound of energy for binding energy distribution bed(E).

ngride Number of grid points along energy axis.

ngridt Number of grid points along time axis.

ngrida Number of grid points along angular axis.

dw Grid width of frequency axis in the power spectrum plot.
(1/psec) (number of grid points along frequency axis is fixed
at 100).

nehb Number of hydrogen bond criteria. If nehb=0, the hbd calcula-
tion is skipped. If nehb 6= 0 , a file that includes hydrogen bond
criteria must be opened by the file subtask.

166 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

msteps (For time dependent properties.) The maximum number of time
steps to be used. This needs to be less than or equal to the
number of records in the trajectory file.

4.2.2 Subtask File

Open and close I/O files. Only a few qualifiers are interpreted in this subtask.
• file [result | hbond] file fname

• file close

result Open the file fname where the results will be written out, rather
than to the main output file.

hbond Open the file fname from which the hydrogen bond energy cri-
teria (in kcal/mol) are read.

close Closes all the open trajectory files.

4.2.3 Subtask Static

Perform analysis of static properties for species-species interactions. The
static properties that can be calculated within this subtask are: rdf, the
radial distribution functions (and energy distribution functions), and adf,
the angular distribution functions.

4.2.3.1 Rdf

Calculate the radial distribution (rdf) and energy distribution (bed) func-
tions. The user must specify a pair of atoms (or groups of atoms) using
iatom and jatom. An example of this subtask is seen in Section C.3.5 [RDF
(example)], page 287.
For each group of atoms to be used, species, residues and atoms may be
specified. The keywords iatom and jatom initiate the descriptions of the
atoms to be included in the calculation; the input format is the same as
in the adf calculation. The user must supply atom names (or groups of
atom names) (i, j) after iatom and jatom. If the keyword jatom is fol-
lowed by nothing then the choices for iatom are used. The names must be
consistent with igraph. (see Section 2.2.3 [Create Subtask Print], page 32
for the definition of igraph). Unlike the adf case, all atoms entered af-
ter each keyword are regarded as non-equivalent. However, the user may
also indicate what atoms are to be considered equivalent for the purpose
of computing inter-molecular correlations. For example, a water molecule
has two equivalent hydrogen atoms. In principle, any atoms in any residue
can be declared equivalent to see the average over those atoms.2 Atom
names (after keyword equivalent) in a molecule must be consistent with
igraph (see Section 2.2.3 [Create Subtask Print], page 32 for the definition

2 Physical interpretation of the result must, however, be made very carefully.

Impact 4.0 Command Reference Manual 167

Chapter 4: Analysis Routines

of igraph). The sequences of atom names following atom and equivalent
are terminated by the token end.

• static rdf iatom name spec [inresidue number | iresidue residue_label_type] -

atom list_atom_names end [equivalent atom_name atom_name end] -

jatom [name spec [jnresidue number | residue residue_label_type] -

atom list_atom_names end [equivalent atom_name atom_name end]]

• static rdf run [plot_options [delay file fname [file fname]]]

iatom

run Run the statics analysis. This takes a number of options for
output.
wrrdf Print out the radial distribution function rdf.
wrbed Print out the binding energy distribution function

bed.
wrhbd Print out the hydrogen bond distribution function

hbd.
plrdf Plot rdf using the standard Impact plot options. For

each radial distribution function two plots are gen-
erated: the rdf and its integration. Therefore, this
option required that two file names be supplied to
redirect the output of the graph (or any permitted
device style – see Appendix B [Plot], page 227).

plbed Plot bed.

4.2.3.2 Adf

Calculate the angular distribution function adf for an atom triplet (i–j–k).
Atom i is in one molecule; atom k is in the other molecule; atom j can be
in either the first or second molecule (default is in first molecule which is a
solute). The distribution for the cosine of the angle between the two vectors
rij and rjk (rij = rj − ri, rjk = rk − rj) is calculated.
The keywords iatom, jatom and katom initiate the descriptions of the atoms
to be included in the calculation. The user must supply atom names (or
groups of atom names) (i, j, k) after key words iatom, jatom and katom. The
names must be consistent with igraph. (see Section 2.2.3 [Create Subtask
Print], page 32 for the definition of igraph). Atom name entry is terminated
by placing end at the end of the list. Unlike the rdf case, all atoms entered
after each keyword are regarded as equivalent.
By default all residues (keyword all) in the named species will be considered.
Optionally, a specific residue number (nres) or a residue name (res) may

168 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

be given. Unique atom names must always be input, as defined in create;
the atom names must be placed after the keyword atom. All atoms entered
after each keyword are regarded as equivalent.
Notes:
1. If a residue number (nres res number) is supplied, the program calcu-

lates the adf of solvent around the specified atoms in that one residue.
If a residue name (res res name) is specified, then the adf of solvent
around specified atoms in all residues with that specified name are cal-
culated. If all is entered as a residue name, then the adf is calculated
over all residues that contain the specified atom name(s).

2. The adf is only calculated for those solvent atoms that are between the
values specified by the rlow and rup keywords. The cutoff is atomic
or molecular as previously defined in setmodel. Typically the solute is
atomic and the solvent molecular.

3. The cutoff radii (rlow, rup) used for rdfs are always atomic, even if
the species has a molecular cutoff defined above. (See subroutine dfunc
for exact code). Thus if angular are to be compared with radial distri-
bution functions (adf and rdf), the former should also be calculated
with atomic cutoffs. This is especially important for water hydrogens
at small radii.

bond By default the jatom is bonded to the katom. The program
makes the assumption that atoms that are bonded to each other
have no distance cutoff to each other and that they are always
in the same molecule. For atoms that are not bonded rlow and
rup are used to determine if that pair of atoms is included in
the adf calculation.

• static adf bond iatm jatm katm to iatm jatm katm

nobonds iatom, jatom and katom are not bonded to each other. This
means that the three atoms are treated as isolated points. Cut-
offs are used for each pair of atoms.

oopl Out-of-plane calculation.
• static adf oopl [atomclass] [morethan xc1] -

[morethan xc2] ... from -

[name spec] [resn number] -

atom [iiatm jjatm kkatm end]

oopl calculates the number of atom(s) of type atomclass (i.e.
of type iatm, jatm, or katm as defined above) that are more
than distance xc from the plane defined by atoms iiatm, jjatm
and kkatm, and also are within the radius limits rlow and rup
(defined in input).
Caution:

Impact 4.0 Command Reference Manual 169

Chapter 4: Analysis Routines

1. If oopl is to make sense, then the atom types iatm, jatm,
and katm need to have been previously defined, i.e., the line

static adf name ...

should come before the line
static adf oopl ...

2. If oopl is to make sense, then one of the atom types that
defines the radial cutoff (e.g. jatm) should also be one of
the atoms that defines the plane (e.g. jjatm).

3. Up to ten oopl distances are allowed, each is preceded by
the word more (or morethan) in the input line.

4. if oopl is used, then all atomic coordinates are rotated rela-
tive to the plane defined by iiatm, jjatm, kkatm; hence the
usual periodic boundary conditions no longer apply. thus
if periodic boundary conditions are used, and one is using
a large rup (i.e., molecules near the boundary are being
considered), then a normal angular distribution function
or radial distribution function will be incompatible with an
out-of-plane adf (i.e., don’t calculate both in the same job).

run Run the statics analysis.
wradf Print out the adf.
pladf Plot adf.

4.2.4 Subtask Dynamics

This subtask analyzes “dynamic” properties.

4.2.4.1 Solvent

Calculate solvent properties.
vcf Calculate velocity auto-correlation function and its power spec-

trum.
avcf Calculate angular-velocity auto-correlation function and its

power spectrum.
msd Calculate mean square displacement.
plvcf Plot vcf.
plavcf Plot avcf.
plspectrum

Plot power spectrum.
wrvcf Write vcf on specified file.
wravcf Write avcf on specified file.
wrspectrum

Write power spectrum on specified file.

170 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

4.2.4.2 Solute

Calculate solute properties.

sqdelr sqdelr is similar to solvent msd in calculating the mean square
displacement, however it calculates atom by atom. The atomic
mean squared displacements are only meaningful if the center-of
mass is not moving.

Impact 4.0 Command Reference Manual 171

Chapter 4: Analysis Routines

4.3 Mini-Tasks: Nmodes and Rraman
The tasks nmodes and rraman are very small tasks that are not terminated
by the keyword quit; however, they are placed just before the end that
terminates the input file.

4.3.1 Task Nmodes

Nmodes will print frequencies and the associated mass-weighted cartesian
normal modes and internal coordinate normal modes. If the following com-
mand line specifies ped, a potential energy distribution analysis will be cal-
culated and printed. An example of the use of task nmodes is given in
Section C.3.10 [Normal modes (example)], page 303.

• nmodes

ped

end

Caution:

1. You should minimize the coordinates before a normal mode calculation.
The results are completely meaningless if you do not minimize to a very
strict tolerance on the energy and forces.

2. Caution must be used with ped. This routine requires an independent
set of internal coordinates, which are assumed to be the first N − 1
bonds, N − 2 angles, and N − 3 dihedrals; this requires the user to
make sure that these degrees of freedom are independent in the residue
file for building the molecule. Rings may be a problem if you are not
careful; you may have to write your own routine to specify the internal
coordinates.

3. You may find it helpful to print out an internal coordinate tree (see
Section 2.2.3 [Create Subtask Print], page 32) so that the internal co-
ordinate numbers specified in the ped analysis can be understood.

4. Both nmodes and ped have been rigorously tested for one species only.
While the program has been set up to do more than one species, it
should not be used for the case of two species, where it has not been
tested. Nmodes cannot do a subset of atoms in one or more species.

4.3.2 Task Rraman

Resonance Raman (rraman) is a two-photon process involving transitions
between the ground state and excited electronic states of a molecule. The
matrix method approach to the calculation of optical absorption spectra
assumes that the ground and excited states can be described in the harmonic
approximation. In this method one writes the Hamiltonian for the excited
electronic state in the (electronic) ground state basis and keeps only the
quadratic terms:

He =
1
2

(~x · B · ~x+ K · ~x)

172 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

where ~x represents the nuclear configuration written in terms of ground state
modes; the matrix B

¯
takes into account both the frequency shifts and mode-

mixing that occur when the excited state modes are written in the ground
state basis; and the vector K

¯
gives the displacements of the excited state

configuration relative to the ground state one. We can use Impact to obtain
the parameters K

¯
and B

¯
.

• rraman

ground coordinate file fname [print | noprint | nil]
end

Impact 4.0 Command Reference Manual 173

Chapter 4: Analysis Routines

4.4 Table
This task provides some special functions for manipulating lists,1 for looping
over trajectory files, and performing several task-like subtasks.

4.4.1 Subtask Create
This subtask creates a new blank or filled table whose structure is defined
in size and type by a template table.

• create copy of list_expression

• create as [empty | value user_constant]

as empty Fill all the fields with zeros or blanks.

as value Set value to a user defined constant, such as a single number or
a set of numbers or character strings (strings must be delimited
by dollar signs).

copy creates a copy of a list expression. The list expression is normally
a simple list, but it can be a series of values or a colon notation
expression.

4.4.2 Subtask Print

This subtask prints tables indexing and labeling the entries in a meaningful
manner. Tables that are of type atom, residue, or species will be indexed
appropriately. Tables that are of the bondlist, anglelist or torsionlist
type will be indexed with additional columns of atom and residue informa-
tion. All other tables are printed with no special indexing. The options for
this subtask are controlled be the Printoptions subtask. The parameters
for the Print subtask are a list of table names.

4.4.3 Subtask Printoptions

This subtask allows the setting of the various print options such as labeling
and column widths. The options set within this subtask remain in effect
until they are turned off or reset. These options include:

title (character string *) Set the title for the header line on each page.
The title string should be terminated with the ‘*’ character.

format (Fortran-style format) Change the print format used. The de-
fault is (1F10.5).

width (number) Change the maximum column width. If you change
the format to print wider numbers, then you must also increase
this width to fit.

relabel (listname) as (character string *) Change the label for specified
listname to the character string.

1 Remember that lists and tables are equivalent structures.

174 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

columns number Set the number of columns displayed per page to num-
ber.

pagelength
lines Set the number of lines displayed per page to lines.

The following options apply only to atom, residue, molecule or species
structures.

nospecies
Do not print species name.

noresidue
Do not print residue name.

noatom Do not print atom name.

4.4.4 Subtask Plot

This subtask plots x−y graphs using the data contained in tables. Plot will
draw a two dimensional graph using the tables supplied as parameters. If the
first table parameter contains two real dimensions then the two dimensions
will be plotted against each other. The first dimension is used for the y axis
and the second is used for the x axis. Time lists created by the starttrack
and stoptrack loops are best plotted this way. If there is only one dimension
of real numbers in the first list then two or more lists are required. The first
list will be used as the x axis and the remaining lists will be plotted on
independent graphs as the y axis.

Plot Options available to this subtask are described in the parseplot
section.

model If the MODEL option is given and the following list is of type
atoms or bondlist, as part of the plot options you specify the
REGIS output device, then you can view a simple 3 dimensional
ball and stick model made up of the specified bonds. This task
will grow when there is more need for it.

4.4.5 Subtask Write

This subtask stores Impact table structures in formatted disk files. These
files may be reloaded in subsequent Impact jobs using the read subtask. Files
created with write are transportable between different hardware platforms.
In addition to the raw data in a table, files created with the write subtask
will also contain all the information required to reconstruct the table data
structures used within Impact. Manual modifications of these files should
be performed with care.

• table

write file fname ’table_name’

quit

Impact 4.0 Command Reference Manual 175

Chapter 4: Analysis Routines

4.4.6 Subtask Read

This subtask will load internal table structures from a formatted disk file into
tables accessible within the Impact DICE environment. The read subtask
assumes that input files are in the format produced by subtask write.

• table

read file fname ’table_name’

quit

4.4.7 Subtask Reset

This subtask allows the “updating” of built-in tables to reflect changes made
by another Impact task. It also frees up memory if space available for lists
starts to get small. The updating does not occur until the table is referenced
again.

4.4.8 Subtasks Starttrack, Stoptrack and Traj

These related subtasks allow for the creation of “time tables,” which are
tables made by filling the results of a series of put subtasks over the changing
data sets represented by one or more trajectory files. For an illustration, see
Section C.3.5 [RDF (example)], page 287.
A time table is a table that contains a timestamp subfield in addition to any
data fields, and is consequently a convenient structure to record the values of
properties as they change during a series of trajectories. The traj subtask
specifies the trajectory files to use. There are a number of options available
to this subtask that are described in detail in the trajectory section. The
subtask starttrack marks the start of a “loop”. It also is where you can
optionally specify which tables are to be stored as timelists. This optional
syntax is:

• define timelist ... from alist as timestep ...

There can be N timelists specified between define and from. They repre-
sent the first to Nth elements of the list alist specified between the keywords
from and as. You should not use timelist on command lines between
starttrack and stoptrack since they will be automatically updated and
created as you put values in the tracked list table. In the following example
’result.list’ is defined as a timelist and selected bond angles are appended
to this list with a timestamp. The process is repeated at all trajectory frames
specified by the trajectory options. The following example is partly a meta
example.
Example:

table

trajectory nfile number maxrec number nskip number unformatted deltat val -

coor and veloc every num nobox traj fname file file1 file file2

starttrack define ’result.list’ from ’my.angles’ as timestep

put residues:residue_name:atoms:atom_name: into ’my.atom’

176 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

put ’anglelist_bang’ with ’my.atom’ into ’my.angles’

stoptrack

[write file fname result.list | show result.list]

quit

4.4.9 Subtask Restore
This subtask loads the contents of a table into a program array.

• restore [charge | velocity | xyz] ’avg.coord’

xyz the cartesian coordinates

velocity the velocity array

charge the charge array

Table user table is the name of a table containing data to be copied to an
internal array. The table must have the type corresponding to the array to
be loaded.
In the following example the contents of the table ’avg.coord’ is loaded into
the cartesian coordinate common block and then these coordinates are writ-
ten to a standard PDB format file.

xyz ’avg.coord’

create

print coord name protein file avgcoord.pdb brook

quit

The restore subtask could also be used to do free energy calculations:
put 0.0 into ’lambda’

put ’charge’ with species:protein:residue:ala*:atoms:*: -

into ’initcharge’

while ’lambda’ le 1.0

put ’initcharge’ * ’lambda’ into ’newcharge’ !figure out new charges

restore charge ’newcharge’ !place newcharge into common block

...

< dynamics run >

...

put ’lambda’ + 0.05 into ’lambda’

endwhile

At the end of a run like this 20 trajectory files would exist generated with 20
sets of charges. Note that the dynamics portion is done with a call statement
to a file, which would need to contain a standard dynamics input. The use
of such a call is indicated in the example below, in which the trajectories are
analyzed to calculate the hydration energy (in task analysis) with the same
variation in the charges. Note that starttrack and stoptrack would be
needed to do the loop through each trajectory file. (Warning: the following
would need considerable modification for any real system.)

put 0.0 into ’lambda’

put ’charge’ with species:protein:residue:ala*:atoms:*: -

into ’initcharge’

Impact 4.0 Command Reference Manual 177

Chapter 4: Analysis Routines

while ’lambda’ le 1.0

put ’initcharge’ * ’lambda’ into ’newcharge’ !figure out new charges

restore charge ’newcharge’ ! places newcharge into common block

table

call trajinfo file trajinfo.inp

starttrack

quit

call analysis file hydrationanalysis.inp

put ’hydration’ with species:protein:residue:ala*:atoms:*: -

into ’e0’

put sum ’e0’ into ’e0’

put ’hydr0’ append ’e0’ into ’hydr0’

reset ’hydration’

table

stoptrack

quit

put ’initcharge’ * (’lambda’+0.05) -

into ’newcharge’ !figure out new charges

restore charge ’newcharge’ ! places newcharge into common block

table

call trajinfo file trajinfo.inp

starttrack

quit

call analysis file hydrationanalysis.inp

put ’hydration’ with species:protein:residue:ala*:atoms:*: -

into ’e1’

put sum ’e1’ into ’e1’

put ’hydr1’ append ’e1’ into ’hydr1’

reset ’hydration’

table

stoptrack

quit

put ’lambda’ + 0.05 into ’lambda’

endwhile

put ’hydr1’ - ’hydr0’ into ’diff’ ! hydr1,hydr0 are hydration values

put sum ’diff’ into ’answer’ ! sum the differences = hydration free energy

4.5 Binning Subtasks
The binning routines process previously created trajectory data for visual-
ization using, e.g., the Data Visualizer. Currently, it is possible to view
the solvent density, average dipole moments of the solvent, or the average
solute-solvent interaction energy of the solvent molecules. Here we refer to
a box and bins, where the box is a virtual box, and it overlays the simulated
box of solvent molecules. The volume of the virtual box is gridded into a set
of regularly spaced bins.

178 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

4.5.1 Subtask Binsolvent

Binsolvent determines the density of the solvent molecules in a simulation
in each user defined bin within the solvent box. The output is in wave file
format suitable for examination with the Data Visualizer.

table

binsolvent

grid [center [name spec [resnumber resn [atname atna]]]

[rotate [matrix] | [name spec [resnumber resn -

[atn atomi atn atomj atn atomk]]]]

init [xl val yl val zl val] -

[xstep val ystep val zstep val] -

[xori val yori val zori val] -

[scale val]

quit

table

trajectory trajectory file info

quit

table echooff

starttrack

quit

table

binsolvent

run

quit

table

stoptrack

closefiles

quit

table echoon

binsolvent

finish wave file fname

quit

where trajectory file info is as described in Section 4.2.1 [Input (mdanalysis)],
page 165.

grid Determines the center of the binning grid, the default is the
center of the box. The keyword center begins the definition of
the box center, and can be defined by one or more of species,
residue, or atom descriptors. For example only specifying name
spec would translate the system so that the center of mass for
the species would be at the box center (coordinate 0,0,0). For
each frame the system is translated to that the chosen center of
mass lies at the coordinate center.

rotate For each frame of the trajectory, rotate the system so that there
is a common rotational reference. This should always be in-
cluded in cases where the solute was not frozen during the origi-

Impact 4.0 Command Reference Manual 179

Chapter 4: Analysis Routines

nal simulation and may be included for other cases. The default
is to use atoms 1, 2 and 3 of the solute to define the rotation
axes.

rotate matrix
Uses transformation matrices generated elsewhere to rotate the
coordinates.

initialize
Perform various initialization prior to the application of
binsolvent run; it should be the last binsolvent command
called prior to using the run command. After the init function,
the traj and starttrack commands should be used to read in
the trajectory data

xl, yl, zl
Set the lengths of the x, y, and z edges for the solvent
box.

xori, yori, zori
Set the origin of the binning grids/virtual box in
the x, y and z dimensions.. These values are con-
ventionally -0.5 * boxlength (xl, yl and zl) to put
point 0,0,0 in the center.

xstep, ystep, zstep
Set the grid stepsize.

scale Scale the resultant solvent density by this value.

run The run command performs the actual binning. The table
function stoptrack is used after the run command.

finish Finish writes out the results of the binning process to fname.
The keyword wave causes wave file format to be used. Otherwise,
a stream of bin contents is written with the x index varying
fastest.

4.5.2 Subtask Bindipole

Bindipole determines the average dipole moment of the solvent molecules
from a molecular dynamics trajectory. Two types of output are available;
one gives the vector dipoles, and the other gives the average dipole moment
magnitude at each gridpoint.
Most commands are the same as for binsolvent, with the following excep-
tions: The rotate matrix option is not available. The finish wave option
writes out the dipole moment magnitudes. The finish vector option out-
puts a file containing the averaged dipole moment vectors.
Example:

180 Impact 4.0 Command Reference Manual

Chapter 4: Analysis Routines

table

bindipole

finish [vector] file fname

quit

When more trajectory files are going to be opened than can be processed
in a single Impact run, the output must be stored in the vector format so
that averaging of the data can be performed later.2

4.5.3 Subtask Binenergy
Binenergy determines the average solute-solvent energy of the solvent
molecules. The energy upon output is negated. This means that the most
favorable energies will be positive and the least favorable will be negative in
the output. This is done for better comparison with results from binsolvent
Again, the commands are the same as for binsolvent, with the exception
that the rotate matrix option is not available.

table

binenergy

finish wave file ’wavefile’

quit

2 A separate program for averaging across several files must be used in this case.

Impact 4.0 Command Reference Manual 181

Chapter 4: Analysis Routines

182 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

5 Advanced Input Scripts

In this chapter, we will discuss some advanced features of Impact input
scripts (DICE scripts). You will find it is very powerful after you spend some
time with it. You can manipulate internal data lists; you can use if else
endif statements inside the input file; you can specify a while endwhile do
loop to control a simulation; you can even call a previously written script
subroutine to perform a common task, etc.

5.1 Background
As you have probably noticed already, at its core Impact is a program for
processing a series of commands in a control file, the input file. These basic
commands comprise a set of powerful tools for modeling complex chemi-
cal structures; the three levels of commands are the task, subtask and the
“program” levels. The last level is independent of which task or subtask
is presently being used, and consists of a set of data structures and pro-
gramming constructs. At the program level it is possible to write programs
defining the execution of Impact, as well as to access and modify internal
Impact data structures using lists. For example, counters can be created
and incremented, tasks and subtasks can be executed inside of looping con-
structs, and the internal state of Impact can be examined or modified.
The task level communicates to the program that a group of complex op-
erations will be performed. Each task is invoked by giving the task name
alone on a line of the input file. For example, for the dynamics task, which
integrates the equations of motion for a chemical system, the word dynamics
appears alone on a line. This causes the program to branch into the portion
that performs a molecular dynamics simulation. The word quit (alone on a
line) ends the current task and returns the execution pathway to the main
controller. At this point the subsequent task is performed.
Inside each task a series of subtasks are performed. Here details are given
about the particular pathways to follow or parameters to use in the con-
text of the current task. For example, in the task setmodel (which specifies
the features of the energy model to be used in simulations) the subtask
setpotential specifies the types and weights to be used in the energy func-
tion. The subtask mixture takes a solute molecule and places it in a box of
solvent molecules.
At the lowest level, programming constructs and data structures are ma-
nipulated in a task/subtask independent way. When these programming
constructs are used, the commands appear by themselves on a command
line. For example, in using Impact’s conditional construct, an if block, a
line such as ‘if ’a’ eq ’b’ dynamics endif’ would not work, however, the
following multiple line command is acceptable:

if ’a’ eq ’b’

dynamics ! do the task dynamics if ’a’ and ’b’ are equal

Impact 4.0 Command Reference Manual 183

Chapter 5: Advanced Input Scripts

< some dynamics operations >

quit

endif

The existence of a programming language inside of Impact greatly increases
both its ease of use and the ability to express complex computational exper-
iments that might otherwise be all but impossible to perform.
The data structures available in Impact are scalars and lists, which corre-
spond to variables and constants in typical programming languages. Lists
are perhaps most similar to arrays of records, and may contain one number,
or thousands. An Impact list is like a two dimensional array in containing
rows and columns; the number of rows is called the size and the number of
columns is called the dimension of the list. An element of a list is, for exam-
ple, the value at row 1 and column 1.1 Generally the size of a list is flexible
and will grow as needed, whereas the dimension is fixed and is determined
by how the list was first created. Arithmetic operations on lists normally
require that both operands be of the same dimension or that one be scalar.
When used as a logical expression, an empty list will be the same as a false
expression. Conversely, a list with any elements in it is a true expression.The
elements of lists can be referenced in a number of ways.

5.1.1 Lists

For the user of Impact, the primary means to manipulate data is using the
data structures referred to here as lists or tables.2 The names of lists are
always placed within single quotes when used, and these names have max-
imum lengths of 30 characters. All characters supported by the computer
are allowed with the exceptions of single quotes and underscores. Some valid
names are ’Validname’, ’themotherofalllists’’ and ’abc123me&u’. Note that
underscores should not be used in list names since they are used to delimit
columns of real numbers.
A list is a collection of related elements with a well defined structure, both in
size and dimension. Some major types of list structures in Impact are atom,
residue, molecule and species number; these types of structure are automat-
ically recognized within Impact. Properties such as charge and surface area
are frequently calculated in one of these types of list. Other types of list
may also be used, for example lists to store properties with cartesian (x, y,
z) components, or lists of position, force and velocity. Another type of list
is a set of of statistics containing the three components sum, average and
standard deviation.
There are two broad catagories of lists, user defined and internal. Most
properties are shared by these two types. However, several internal lists

1 A list with size 1 and dimension 1 would be the same as a scalar variable found in many
computer languages.

2 Lists and tables are equivalent.

184 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

are tied to the internal system state. Internal lists are “peep holes” into
the major Impact data structures. These lists are created the first time
they are referenced as a copy of the current state of the related Impact
data structure.3 These lists are are structured according to the information
contained within them, since Impact is able to create the structure of the
list from the information in the chemical system currently being used. For
example, the list surfacearea is structured by atom.
Both internal (built-in) and user defined lists only “come into existence”
the first time they are specified. Because internal lists are only copies of
the internal data structures used by Impact, they stay fixed after the initial
copy is made, even if subsequent Impact tasks modify the corresponding
internal data structures. These lists are only “refreshed” with current data
when used the first time. To subsequently update the lists with new data
the old copies are first erased using the reset command, after which any
subsequent use of the list will cause it to be updated with the current Impact
data. For later updating, the reset command must be used again. Many
of these built-in lists are useful for storing information from tasks for later
retrieval. This is particularly useful if dynamics is being run on the same
system many times. Then the average of the averages of individual runs can
be obtained.
While internal lists may be used before being assigned values, they will some-
times be undefined until certain subtasks are executed. For example, the
bondlist has a component that is the actual bond energy, but this assumes
that the parameters have been defined by using the setmodel task. The
list Current.kinetic contains the current kinetic energy but this requires
that dynamics has been run. Other internal lists requiring that a task or
subtask be performed before they may be used are the lists for surface area
(surfacearea) and the rms deviation (rms.dev.atom), where the analysis
task must be run and the appropriate subtasks performed before the lists are
properly defined. The creation of these lists is done automatically, and they
may be used after the subtasks are run. The cartesian coordinate list (cord)
can be used at any point after the task create is performed. In general,
the contents of the list will vary depending on when the list is used. For
example, the values of cord change after a dynamics run. Remember the
caveat that the value of internal lists are set as soon as they are used, but
if the values need to be updated the command reset must be used to clear
the old contents of the list. The next use of the list name will then cause
the values of the list to be updated.

5.1.2 Internal Lists

The following tables show the internal (“built-in”) lists that carry the current
state of various Impact internal data structures.

3 We emphasize that internal lists are user-accessible copies of the Impact data structures.

Impact 4.0 Command Reference Manual 185

Chapter 5: Advanced Input Scripts

Global Impact built-in lists
List name List type Impact tasks
surfacearea atoms analysis
hydration atoms
bondrr residues
torsionrr residues
14elerr residues
vdwerr residues
hb1012rr residues
totalrr residues
anglerr residues
14ljerr residues
noerr residues
eelrr residues
hbelrr residues
rmsfluctuations atoms mdanalysis
avg.temp species dynamics
avg.kinetic species
avg.bond species
avg.angle species
avg.torsion species
avg.nonbonded species
avg.lj612 species
avg.coulomb species
avg.hbond species
avg.lj14 species
avg.coulomb14 species
avg.potenergy species
avg.totalenergy species
avg.translation species
avg.rotation species
avg.virial species
avg.tail species
current.kinetic species
current.translation species
current.rotation species
current.temp species

186 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

Global Impact built-in lists (continued)
List name List type Impact tasks
potenergy species minimize, montecarlo,
current.bond species or dynamics
current.angle species
current.phi species
current.nonbonded species
current.lj612 species
current.coulomb species
current.hbond species
current.lj14 species
current.torsion species
current.buffer species
current.tail species
current.energy species

Global Impact built-in lists with subfields
List name List type Subfields (names)

atoms atoms
residues residues
molecule molecules
species species
force atoms x y z
velocity atoms x y z
box dimensions x y z
charge atoms
bondlist bonds bdis (distance) enrg (energy)
anglelist angles bang (angle) enrg (energy)
torsionlist torsions btors (torsion) enrg (energy)
cord atoms x y z
intcord atoms bnd (bond) ang (angle) phi (torsion)

5.1.3 Subsets of Lists

It is often desirable to select an element, or sets of elements from lists. There
are several ways to do this.

5.1.3.1 Underscore notation
Lists with multiple dimensions may be referenced by appending an appro-
priate suffix to the list name, where the format is ‘listname_ref ’. For
cartesian components the suffixes are _x, _y and _z, and for statistical com-
ponents _sum, _avg and _stdev. For instance, the x component of the force
list named ’myforce’ would be named ’myforce_x’. A collection of other
prefixes is:

_1 _2 _3

Impact 4.0 Command Reference Manual 187

Chapter 5: Advanced Input Scripts

_bdis _enrg

_bang

_btors

_bnd _ang _phi

Another use of the underscore is to modify the order of printing or calcula-
tions. There are a number of field modifiers supported, and the order field
modifiers appear will dictate the order they will appear in the resulting list.

’cord_x_y_z’ same as ’cord’
’cord_y_z_x’ a 90 degree rotation
’intcord_phi’ only interested in the angle value
’bondlist_enrg’ only interested in bond energy
’torsionlist_btors’ only interested in torsion value

5.1.3.2 Lists as arrays

A range of list elements can be specified using square brackets. For instance,
’myforce_x[1:100]’ specifies the first 100 elements of the list of x compo-
nent of force. A sublist may always be substituted for a list.

5.1.3.3 Colon notation

Subsets of lists can also be specified using colon notation and a number of
list operations. Note that the properties defined using colon notation make
up a virtual list when used with the list selectors, i.e., the with command.
This is done by defining constraints (properties), each constraint building
on the previous ones, until a collection of properties is specified that defines
the structure of interest. With this structure you can then select a subset of
elements from a list of interest.
In the following code fragment

species:spec:molecule:mol:

we specify a subset where the elements share the properties of (a) belonging
to species spec and (b) belonging to molecule mol. In

residue:res:atom:atom:

the elements of the defined subset would belong to residue res and possess
the atom name atom1. Any of these specifiers may be replaced by a range of
names or numbers separated by a hyphen, or a group of comma-separated
names or numbers. The wild card character ‘*’ may be used to specify all
names or numbers of a particular type, or it may also be used with any
combination of symbols to create a name.
It is important to emphasize that the rightmost component of this structure
specification determines the structural feature referenced. For instance,

species:1:residue:1:atom:1

refers to atom number one in residue number 1; whereas
species:1:residue:1

1 The specifiers spec, res or mol are names or numbers.

188 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

refers to the entire first residue. Molecule is an optional specification. If
the species or the residue specification is omitted then all species or all
residues are implied. Here are some examples:

species:1 ! species one

species:1:residue:1 ! the first residue in species one

species:Water ! the species named Water

residue:1 ! residue one

residue:1:atom:* ! all atoms in residue one

residue:1-3,6:atom:* ! all atoms in residues one through three and six

residue:1:atom:C* ! all carbon atoms in residue one

residue:HYP*:atom:C* ! all carbon atoms in all HYP residues

A constraint is one of the following:
• Any internal list that contains a valid structure (e.g., an atom, residue,

molecule or species list).
• species:ranges:
• molecules:ranges:
• residues:ranges:
• atoms:ranges:

5.1.3.4 Hyphen notation

Ranges are a list of numbers separated by hyphen (inclusive) or commas or
a list of strings with or without wild cards, the ‘*’ character.

residues:1-4:atoms:CA,C,N:

molecules:1:atoms:1,3-5:

species:1:

residues:*:atoms:C*:

atoms:1-4:’myproperty’

Note that an attempt will be made to locate the specified structure through-
out the whole system. For example, the query

atoms:1:

returns a list containing the first atom for each residue and not just the first
atom of the entire system.
Once a structure is defined, a subset can be chosen where the elements share
appropriate properties. In the following items the subsets are equivalent to
lists. The list selector with is used here for selecting subsets from lists, and
along with other selectors is described below.
• ‘’surfacearea’ with atoms:1-4:’ results in a subset of the list

surfacearea corresponding to atoms 1 to 4.
• ‘’force_x_y’ with residues:1-3:atoms:*:’ results in a subset of the

list force containing the x and y force components for all atoms in
residues 1 to 3.

• ‘’rmsfluctuations’ with residues:4:atoms:h*:’ results in a subset
of the list rmsfluctuations for all hydrogen atoms in residues 1 to 4.

Impact 4.0 Command Reference Manual 189

Chapter 5: Advanced Input Scripts

Having selected the range of properties you wish to work with you can do
operations on those properties. A large library of arithmetic and statistical
functions is available.

5.1.4 List Creation

Lists are generally created using the command put; however, create has
some uses that the other doesn’t. This latter command is specific to the
task table (see Section 4.4 [Table (analysis)], page 174).

5.1.4.1 Put
The put statement is used to assign values to lists. In doing so the list is
created if it didn’t already exist.

put ’expression’ into ’list’

5.1.4.2 Create

Create a new list. This operation can only be performed inside of the task
table (see Section 4.4 [Table (analysis)], page 174).

5.1.5 List Selection

As noted above, the properties describing subsets of lists are built up us-
ing several notations, and subsets of lists are actually constructed using list
constructors like with; this and other list functions are described here. The
resultant subsets are often placed in new lists, which is the convention fol-
lowed in these examples.

5.1.5.1 With
The function with returns those elements in one list that are found in both
lists. Atoms, molecules, residues, and species are recognized by these func-
tions. In the following example those elements in the ’charge’ list belonging
to atoms with names beginning with the letters ’CA’ are selected.

put ’charge’ with atoms:CA*: into ’result’

5.1.5.2 Withonly
The withonly function extracts those elements in the list whose atom,
molecule, residue or species specification match the entire target specifi-
cation. In the following example, only those bonds containing both CA*
and N* atoms are extracted. In contrast the selector with returns all bonds
with CA or N atoms.

put ’bondlist’ withonly atoms:CA*,N*: into ’result’

5.1.5.3 Without
The without function returns those elements in the first list that do not
have relations with the second list. This example extracts those elements
from the torsional internal coordinate list that are not hydrogen atoms.

put ’intcord_phi’ without atoms:h*: into ’result’

190 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

5.1.5.4 By
The by function returns a list that is the result of applying the previous
function over a long list split up by its structures. By requires two lists.
One of these is called the limit and must be of type residue, molecule or
species, and the other is called the range and must be of type atom, residue
or molecule. The result is a list the same length as the limit, with each
element storing the result of applying the previous function over the range
split up along the structures of the limit. The functions you can apply by
to include: abs, int, avg, stat, sum, sum2, ln, sin, cos, tab, asin, acos,
and atan. The following example results in a list of type residue with each
element storing the sum of the atom charges for each residue. (In most cases
this would be a of list of zeros, ones and minus ones.)

put sum ’charge’ by ’residue’ into ’result’

5.2 Operations on Data
A range of functions and list-selectors are available, including the standard
arithmetic expressions and a set of functions defined solely for lists. A list
expression is a list or any arithmetic or functional expression that results
in a list, and a list-expression may always be substituted for a list. The
arithmetic operators include exponentiation (^), multiplication (*), division
(/), addition (+), subtraction (binary -) and negation (unary -). These may
be applied to constants, such as ‘2 * 2’, or used as list operators. Operations
may be performed between lists with common structures, or between lists
and scalars.
When operations occur between lists of different dimensions, the result of the
operation inherits the dimensionality of the list of higher dimension. Con-
sider the following examples in which ’myforces’ is a list of atomic forces
having an atomic cartesian (x, y, z) structure, ’jscal’ is a user-defined list
having a simple atomic structure, and ’const’ is a scalar sonstant.

’myforces_x’ * ’jscal’

multiplies the corresponding elements of the x component of ’myforces’ and
’jscal’.

5.2.1 General Operations

Arithmetic functions are applied to a list in one of three ways:
1. If one of the operators is a single element, the operation is done with

the value of that element against all the values in the other list. (That
means that you can multiply an entire list by a single constant.)

2. Some functions take only a single list and return a few elements of
information about that list, such as the average value of the list, or its
four (4) greatest values.

3. If you are applying a function between two lists and both lists have size
greater than 1, that function will be applied to each element in the two

Impact 4.0 Command Reference Manual 191

Chapter 5: Advanced Input Scripts

lists that correspond to each other. This means you can add the values
of two lists in an element by element manner.
1 + ’mydata’ ! every element gains 1

’mydata’ + ’mydata’ ! <--- these are

2 * ’mydata’ ! the same

’mydata’ pow 0.33333 ! cube root

7 lowest ’mydata’ ! sorted lowest 7 elements

avg ’mydata’ ! the list average put in a new 1 element list

(sum ’mydata’)/(length ’mydata’) ! silly way to avg

(’newdata’+’olddata’)/2 ! result is a new list consisting of the

! average values of each of the list elements

’myforces_x’ * ’const’

multiplies all the x components of ’myforces’ by the value of ’const’.
The command

’myforces’ + 2.0

adds the value of 2.0 to all of the components (x, y, z) of ’myforces’.

192 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

General Operators
Operator Function Parameters Units
+ Addition 2
- Subtraction 2
* Multiplication 2
/ Division 2
abs Absolute value 1
acos Arc Cosine 1 radian
add Addition 2
asin Arc Sine 1 radian
atan Arc Tangent 1 radian
avg Average 1
avgb Special case of by function 2
by Apply a 1 parameter function over

a list of values
(e.g. sum ’charge’ by ’residues’)

cos Cosine 1 radian
distance Distance Function 2 cord units
div Division 2
grdist Greatest Distance 2 atoms units
greatest N Maximum values 2

e.g., 3 greatest ’bondlist bdis’
index Extracts an element from a list 2

e.g. index 10 ’charge’
gets the 10th value from the charge list)

int Truncation 1
length Size of list 1
lowest N Minimum values 2
ln Natural Log 1
^ Exponentiation 2
exp Exponentiation (base e) 1
lstdist Least Distance 2 atoms units
alldist All distances 2 atoms units
hist Histogram 2
max Maximum value 1
min Minumum value 1
mul Multiplication 2
pow Power function (base 10) 1
rand Random number 1
runavg Running Average 1

Impact 4.0 Command Reference Manual 193

Chapter 5: Advanced Input Scripts

General Operators
Operator Function Parameters Units
sin Sine function 1 radian
sizeof Size of list 1
sqrt Square root 1
sqr Square 1
stat Sum, Average, Standard Deviation 1 result is dimension 3
std Standard deviation 1
sub Subtraction 2
sum Add all columns 1
sum2 Add and square columns 1
sumby Special case of by
tan Tangent function 1 radian

Relational Operators
Name of function Example of usage

and if (’timer’ gt 1) and (atoms:ca:)
eq 131 eq 23
ge ’charge’ ge 0.2
gt ’bondlist bdis’ gt 1.2
le ’bondlist bdis’ le 1.1
lt ’anglelist bang’ lt 45
not if not (’timer’ gt 50)
or while (’counter’ lt 100) or (sum ’list’ lt 1)
xor avg (species:*:atoms:c*:) xor avg (species:*:ca:)

5.2.2 Relational Operators

Relational operators may be used to perform list comparisons, and include
lt, le, eq, gt, and ge. For example, the following relational expression
could be used to select the forces greater than 0.05:

(’myforces_x’^2 + ’myforces_y’^2 + ’myforces_z’^2)^0.5 gt 0.05

The boolean operators and, or and not may be used to combine relational
expressions; in particular, a “not-equal” operation can be performed by using
not to negate an eq comparison.
In addition to the standard mathematical operators, Impact provides many
higher level operators that perform selection operations on lists. For in-
stance, the with operator allows a constraint to be applied to a list. In this
example, with is employed to restrict the list of surface area for each atom
to those cases in which the charge on each atom in list ’qbyatom’ is greater
than 0.2:

put ’surfbyatom’ with (’qbyatom’ gt 0.2) into ’result’

194 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

Character and String Operators
Operator Function Parameters
char Integer to char conversion 1
concat Append two strings 1

5.2.3 List Operators

Here the remaining list operations are fully described. These are really
context-independent subtasks and are not expressions.

5.2.3.1 Restore
Restore copies the contents of a list to an internal list, from where it will
be copied to one of the the internal data structures used in Impact (e.g., a
common block). One such internal data structure is charg, another is xyz.
For example, if some operations have been performed on a list of coordinates
it may be desirable to have one of the standard tasks operate on these new
coordinates. Note the required use of the square brackets as delimiters!

put ’cord’ + [0.10 0.10 0.10] into ’cord’ ! translate coordinate list

restore xyz ’cord’ ! put it back into the actual cartesian coordinates

dynamics ! now run dynamics

5.2.3.2 Rand

The rand function returns a single random number in the range 0.0 to the
first element of its parameter. A negative parameter resets the seed number.

5.2.3.3 Smooth

The smooth function returns a list that has less noisy data points. Smooth
breaks up the input list into a series of short ranges and preserves for the
final output those elements that are the mean value of the short ranges. The
size of the range is determined by the first element of the first parameter,
which should be an odd number such as 3, 5 or 7. Very large ranges will
result in serious loss of information.

5.2.3.4 Histogram

The hist (histogram) function does a count frequency on a list (first pa-
rameter) using parameters in a second list. The first list can be any list
with no more than 3 real columns of data. The second list must contain the
minimum value of the histogram, the number of intervals and the width of
each interval. This information can be stored in a list as in [0.0 100 0.25] or
as a list of 3 elements each with 1 real field, e.g., ‘ 0.0 append 100 append
0.25’. The result of this function is a list with the same number of real
columns as the first argument containing the count of values in each interval
plus an additional column containing the values of each interval (e.g., the
above parameters would give 0.0, 0.25, 0.50, etc).

Impact 4.0 Command Reference Manual 195

Chapter 5: Advanced Input Scripts

5.2.3.5 Distance

The distance function returns the distance between two coordinate sets.
Coordinates are in x y z format. The coordinates for the current system are
stored in the built-in parameter list named ’cord’.
The grdist and lstdist functions return the greatest or least distance from
every atom in the first parameter from every atom in the second parameter.
The function alldist returns a list of all distances between the two input
lists. This function should be used carefully since it creates lists of the size
of n ×m where n and m are the size of the atom lists used as parameters.
The result is a bond list.

5.2.3.6 Plotting lists

The subtask plot is defined inside of the table task, and is the general
means for plotting lists (see Section B.1 [Plot (plot)], page 227). Many
other tasks also have their own plot subtasks as well, however, and these
generally use the same mechanism. Thus, plot is almost a task-independent
subtask.

5.3 Advanced Scripts
Using the tools available in Impact, you can program simple tasks that allow
one to:
• analyze data as it is being generated;
• automate simulations, look at results, modify input files and relieve

resubmission drudgery;
• provide an easier method to plot and study Impact compatible data;
• analyze the result of past Impact runs stored in trajectory files;
• provide a mini programming language to allow simple algorithms not

yet implemented in Impact to be tested with access to the Impact data
bases for run time analysis.

A good example is seen in Section C.3.5 [RDF (example)], page 287.

5.3.1 Flow Control

Essential tools needed to control the flow of a program are provided.

5.3.1.1 While
The while statement is used to conditionally execute the contents of its
body, repeating until the condition is false. While you can nest these loops,
it is very important that you never use the goto statement to jump inside
of one. The format of the while statement is

while expression

body of while loop

endwhile

196 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

5.3.1.2 If/else/endif
In an if expression, the first expression following if is tested for its truth
value. If true the body is executed. If an else is present then the optional
code following else is executed when expression is false.

if expression

body

else

optional code

endif

If statements may also be nested, with one endif for every if. As in the
case of the while statement it is illegal to jump into an if block using a
goto.

5.3.1.3 Goto
Goto is provided but not recommend. The format of the goto statement is

:label ! note the colon

some code

goto label ! loop to label

As noted, a goto may not cause a jump into the body of an if block or of a
while block.1 Use of a goto statement to jump out of an if or while block
can cause stack overflows if done repeatedly.2 A goto jump from within one
if or while block into another if or while block will, of course, be fatal.

5.3.2 Subroutines
Call a subroutine and return. Call passes its optional parameters by the
method of “pass by name”; this is a somewhat obscure method of passing
parameters. “Pass by name” from the user’s viewpoint is equivalent to “pass
by reference”. This means that any change in the value of the parameters
within a subroutine will be passed back to the calling routine. Care must be
taken to be sure that the main procedure does not extend into a subroutine.
You should always follow the main procedure by the keyword end.

call alpha(100 ’a’ ’result’) ! call the subroutine

some more code

:alpha(’a’ ’b’ ’c’) ! bind a, b, c to 100, ’a’,, and ’result’

definition body ! perform calculations

put ’somevalue’ into ’c’ ! return the result in variable ’result’

return

You may also append a file name after a call, this will cause the program
to execute that subroutine within that file. Note that except for this special
case all subroutines are searched for from the top of the current program in
a first found, first executed manner.

1 A block is all tasks up to the endwhile or endif.
2 In a purely theoretical sense this is the only legitimate use for goto, and should properly

be called break or exit.

Impact 4.0 Command Reference Manual 197

Chapter 5: Advanced Input Scripts

call label [parameters] file fname

5.3.3 Spawn
Spawn starts a shell process at the operating system level and waits for the
result.

spawn shell command UNIX shell command

spawn shell file executable file’s name

5.3.4 Lists as Parameters

Numeric lists can be placed anywhere a number normally can be specified;
if an operation requires a scalar value then the first element from the list’s
numeric field is used. Short character lists can also be used to hold filenames,
which is especially useful when many files are being created and unique
names are needed. Though we are getting ahead of ourselves by discussing
specific tasks in the following example,3 it does illustrate the use of different
list operations and types of lists. Here we loop over the run subtask in
dynamics4. While it would often only be desired to save the final state in
a restart file, saving intermediate states assures that intermediate work has
been saved if the job is terminated for any reason. A series of trajectory files
might be saved in the same way.
’i’ is a list that is used as if it were an integer variable.
’filename’

is a list of characters that is modified in each stage of the dy-
namics run. Thus, unique trajectory files may be written for
each phase.

$protein$ and ps
are string constants. Note the use of the dollar sign to delimit
string constants.

5.4 Examples
Here we provide a few examples to show how to use the advanced Impact
input scripts for various simulations.
The input files illustrate the calculation of quantities from a molecular dy-
namics simulation of a protein in solution, where trajectory information has
been saved as a series of restart and PDB files written at 1 psec intervals
and named accordingly, eg. ‘gpla_1.pdb’, ‘gpla_2.pdb’, etc.

5.4.1 Backbone and Sidechain Torsion Angles

This example demonstrates the calculation of backbone phi and psi angles
within the protein (sidechain torsions can be obtained using the commented

3 The example uses meta-variables that are explained in Chapter 2 [Setup System], page 17.
4 The task dynamics is described in Section 3.2 [Dynamics], page 79

198 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

block of commands). The Impact input file is straightforward. By using
the phi field of the built-in intcord list and limiting the retrieved entries to
only those defining the tree-structure dihedrals for the backbone carbon and
nitrogen atoms, the backbone phi and psi angles are obtained. The output
file contains a table of backbone phi and psi angles in the format:

SPECIES MOL RESIDUE ATOM PHILIST

--

GPLA 1 LYSB1 N 243.91507

C 36.37835

GLN2 N 84.31257

C 299.98637

LEU3 N 105.24259

C 295.60936

THR4 N 138.06053

C 281.44445

LYS5 N 105.51490

C 325.68637

CYX6 N 302.77196

C 300.26761

ALA7 N 326.31558

C 283.14148

For a residue i, the value listed under N is psi(i-1) and the value listed under
C is phi(i).
The Impact input file:

WRITE file torsion.out -

title calculate torsion angles of a protein*

CREATE

build newresidue lysb file lysb glne file glne

build primary name gpla type protein -

lysb gln leu thr lys cyx ala leu ser hid glu leu asn -

asp ile ala gly tyr arg asp ile thr leu pro glu trp -

leu cyx ile ile phe hid ile ser gly tyr asp thr gln -

ala ile val lys asn ser asp hid lys glu tyr gly leu -

phe gln ile asn asp lys asp phe cyx glu ser ser thr -

thr val gln ser arg asn ile cyx asp ile ser cyx asp -

lys leu leu asp asp asp ile thr asp asp ile met cyx -

val lys lys ile leu asp ile lys gly ile asp tyr trp -

leu ala hid lys pro leu cyx ser asp lys leu glu gln -

trp tyr cyx glu ala glne end

build cross name gpla resn 6 atna sg resn 120 atna sg -

name gpla resn 28 atna sg resn 111 atna sg -

name gpla resn 73 atna sg resn 91 atna sg -

name gpla resn 61 atna sg resn 77 atna sg

read coordinates name gpla file gpla_880.pdb

QUIT

Impact 4.0 Command Reference Manual 199

Chapter 5: Advanced Input Scripts

SETMODEL

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

energy parm cutoff 8.0 listupdate 10 diel 1.0 nodistance print 1

energy constraint bond lonepair

QUIT

! Backbone torsion angles

put ’intcord_phi’ with only atoms:N,C: into ’philist’

show ’philist’

! Sidechain torsion angles

!put ’torsionlist_btors’ without atoms:n,o,c,h*,lp*: into ’tlist’

!show ’tlist’

end

5.4.2 Hydrogen Bonding

This example demonstrates the calculation of the number of intramolecular
(protein-protein) hydrogen bonds for structures collected at 10 psec intervals
using a distance cutoff of 2.5 Å and an angle cutoff of 120 degrees. The hydro-
gen bonds are decomposed into those occuring within the helices and sheet,
between helix or sheet residues and neighboring residues, and by domains
of the protein. This example demonstrates the use of the concat command
operating on lists to build the restart file names and the subsequent reading
of the files using the dynamics task. The plot subtask of task table is used
to write the times in psec and number of hydrogen bonds to the output file.
The subroutine named analhb, stored in an external file, is called to decom-
pose the ’hbond’ list generated by the analysis task into the hydrogen bond
types of interest. Taking the A-helix as an example, limiting the hydrogen
bond list withonly the residue range of the A-helix yields hydrogen bonds
for which both the donor and the receptor are from that helix. Limiting the
hydrogen bond list using with, the residue range yields hydrogen bonds for
which at least one of the hydrogen bonded residues is part of the helix. That
is, the new list contains hydrogen bonds within the A-helix and between the
A-helix and neighboring residues. Using without to remove intra-helix hy-
drogen bonds then gives the list of hydrogen bonds between the A-helix and
neghboring residues. Using sizeof counts the number of entries in each list
and thus yields the number of hydrogen bonds of a given type.

write file hbond.out -

title calculation of protein intramolecular hydrogen bonding *

create

build newres lysb file lysb glne file glne

200 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

build primary name alc type prot -

lysb gln leu thr lys cyx ala leu ser hid glu leu asn -

asp ile ala gly tyr arg asp ile thr leu pro glu trp -

leu cyx ile ile phe hid ile ser gly tyr asp thr gln -

ala ile val lys asn ser asp hid lys glu tyr gly leu -

phe gln ile asn asp lys asp phe cyx glu ser ser thr -

thr val gln ser arg asn ile cyx asp ile ser cyx asp -

lys leu leu asp asp asp ile thr asp asp ile met cyx -

val lys lys ile leu asp ile lys gly ile asp tyr trp -

leu ala hid lys pro leu cyx ser asp lys leu glu gln -

trp tyr cyx glu ala glne end

build cross name alc resn 6 atna sg resn 120 atna sg -

name alc resn 28 atna sg resn 111 atna sg -

name alc resn 73 atna sg resn 91 atna sg -

name alc resn 61 atna sg resn 77 atna sg

quit

setmodel

read parm file paramstd.dat noprint

enrg parm cutoff 78.0 diel 1.0 nodist listupdate 10

setp

mmec

quit

quit

put 1 into ’counter’

while ’counter’ le 880

! Build filename from counter value

put ($gpla_$ concat (concat (char ’counter’) $.rst$)) into ’rstfile’

! Use dynamics task to read restart file

Dynamics

read restart coordinates box external real4 file ’rstfile’

Quit

analysis

ener hbond analyze hbond hbcut 2.5 hbangcut 120.0 echooff

quit

call analhb file analhb_new_cor.inp ! call a subroutine

put ’time’ append ’counter’ into ’time’ ! collect data

put ’totalhbs’ append ’totalhb’ into ’totalhbs’ ! at each psec

put ’has’ append ’ha’ into ’has’

put ’hbhs’ append ’hb’ into ’hbhs’

put ’hcs’ append ’hc’ into ’hcs’

put ’ss’ append ’s’ into ’ss’

put ’ads’ append ’ad’ into ’ads’

put ’bds’ append ’bd’ into ’bds’

put ’interdoms’ append ’interdom’ into ’interdoms’

put ’ias’ append ’ia’ into ’ias’

put ’ibs’ append ’ib’ into ’ibs’

Impact 4.0 Command Reference Manual 201

Chapter 5: Advanced Input Scripts

put ’ics’ append ’ic’ into ’ics’

put ’iss’ append ’is’ into ’iss’

put ’counter’ + 1 into ’counter’

endwhile

table

plot ’time’ ’totalhbs’ tabular file totalhb.dat

plot ’time’ ’has’ tabular file ahelix.dat

plot ’time’ ’hbhs’ tabular file bhelix.dat

plot ’time’ ’hcs’ tabular file chelix.dat

plot ’time’ ’ss’ tabular file sheet.dat

plot ’time’ ’ads’ tabular file alpha.dat

plot ’time’ ’bds’ tabular file beta.dat

plot ’time’ ’interdoms’ tabular file interdom.dat

plot ’time’ ’ias’ tabular file intera.dat

plot ’time’ ’ibs’ tabular file interb.dat

plot ’time’ ’ics’ tabular file interc.dat

plot ’time’ ’iss’ tabular file inters.dat

quit

end

The subroutine called by Impact (read from file analhb new cor.inp:

:analhb

put ’hbond’ with atoms:o,oe*,ne*,og*,od*,oh: into ’hbs’

put sizeof ’hbs’ into ’totalhb’

! Select hydrogen bonds within and between helices, sheets, and domains

! A-Helix

put ’hbond’ withonly residues:5-11:atoms:*: into ’helixa’

put sizeof ’helixa’ into ’ha’

put ’hbond’ with residues:5-11:atoms:*: into ’allhelixa’

put ’allhelixa’ without ’helixa’ into ’intera’

put sizeof ’intera’ into ’ia’

! B-Helix

put ’hbond’ withonly residues:25-34:atoms:*: into ’helixb’

put sizeof ’helixb’ into ’hb’

put ’hbond’ with residues:25-34:atoms:*: into ’allhelixb’

put ’allhelixb’ without ’helixb’ into ’interb’

put sizeof ’interb’ into ’ib’

! C-Helix

put ’hbond’ withonly residues:85-99:atoms:*: into ’helixc’

put sizeof ’helixc’ into ’hc’

put ’hbond’ with residues:85-99:atoms:*: into ’allhelixc’

put ’allhelixc’ without ’helixc’ into ’interc’

put sizeof ’interc’ into ’ic’

! Sheet

put ’hbond’ withonly residues:40-44,47-50:atoms:*: into ’sheet’

202 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

put sizeof ’sheet’ into ’s’

put ’hbond’ with residues:40-44,47-50:atoms:*: into ’allsheet’

put ’allsheet’ without ’sheet’ into ’inters’

put sizeof ’inters’ into ’is’

! By domain

put ’hbond’ withonly residues:1-37,85-123:atoms:*: into ’alpha’

put sizeof ’alpha’ into ’ad’

put ’hbond’ withonly residues:38-84:atoms:*: into ’beta’

put sizeof ’beta’ into ’bd’

put (’totalhb’ - ’ad’) - ’bd’ into ’interdom’

! The identity of the hydrogen bonding atoms can be obtained

! by printing out the lists, eg.

!show ’helixa’

!show ’intera’

!show ’helixb’

!show ’interb’

return

5.4.3 Surface Area and Accessibility

This example demonstrates the calculation of the surface area of a protein
and of the accessibility per residue relative to that expected for an extended
chain. A while loop and a ’counter’ list are used for flow control. This
example also demonstrates the use of the concat command operating on lists
to build the restart file names and the subsequent reading of the files using
the dynamics task. Surface area is calculated using the surface subtask of
task analysis. Lists are used to obtain the surface area per atom and per
residue and for the protein as a whole averaged over the simulation.
Subroutine percent from file ‘percentacc.inp’ is called from the main input
file. This subroutine contains surface area values for residues in an extended
chain as calculated from Gly-X-Gly tripeptides (using a 1.4 Å probe radius).
Accessibility is defined as the surface area of a residue in a protein divided by
its surface area in an extended chain. Accessibilities are calculated for each
residue and collected in list ’pcacc’. In the main input file, the accessibilities
are then collected by residue type. The accessibilities for a particular type
are summed using the sum operation on the list and then counted using the
sizeof operation to calculate the average accessibility per type.

write file sa_acc.out -

title calculation of protein surface area and accessibility *

create

build newres lysb file lysb glne file glne

build primary name alc type prot -

lysb gln leu thr lys cyx ala leu ser hid glu leu asn -

asp ile ala gly tyr arg asp ile thr leu pro glu trp -

leu cyx ile ile phe hid ile ser gly tyr asp thr gln -

ala ile val lys asn ser asp hid lys glu tyr gly leu -

Impact 4.0 Command Reference Manual 203

Chapter 5: Advanced Input Scripts

phe gln ile asn asp lys asp phe cyx glu ser ser thr -

thr val gln ser arg asn ile cyx asp ile ser cyx asp -

lys leu leu asp asp asp ile thr asp asp ile met cyx -

val lys lys ile leu asp ile lys gly ile asp tyr trp -

leu ala hid lys pro leu cyx ser asp lys leu glu gln -

trp tyr cyx glu ala glne end

build cross name alc resn 6 atna sg resn 120 atna sg -

name alc resn 28 atna sg resn 111 atna sg -

name alc resn 73 atna sg resn 91 atna sg -

name alc resn 61 atna sg resn 77 atna sg

build solvent name solvent1 type spc nmol 5721 h2o

quit

put 0 into ’count’

put 0 into ’sumsurf’

put 1 into ’counter’

while ’counter’ le 880

! Build filename from counter value

put ($gpla_$ concat (concat (char ’counter’) $.rst$)) into ’rstfile’

! Use dynamics task to read restart file

Dynamics

read restart coordinates box external real4 file ’rstfile’

Quit

! Calculate Surface Area

reset ’surfacearea’

analysis

surf name alc noprint type noh

quit

put ’surfacearea’ with species:1: into ’surfacearea’

put ’count’ + 1 into ’count’

put ’surfacearea’ + ’sumsurf’ into ’sumsurf’

put sum ’sumsurf’ by ’residues’ into ’surfres’

put ’surfres’ / ’count’ into ’surfres’

put ’counter’ + 1 into ’counter’

endwhile

show ’count’

!! Print average surface area values per atom

put ’sumsurf’ / ’count’ into ’sumsurf’

show ’sumsurf’

!! Print average surface area values per residue

show ’surfres’

!! Print average total surface area

put sum ’sumsurf’ into ’avgsurf’

show ’avgsurf’

!! Calculate accessibility

204 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

call percent file percentacc.inp ! call a subroutine

!! Collect accessibility by Residue Types

! hydrophobic residues

put ’pcacc’ with residues:ala*,val*,ile*,leu*,phe*,pro*,met*: -

into ’pcacchyd’

show ’pcacchyd’

put sum ’pcacchyd’ into ’sumhyd’

show ’sumhyd’

put sizeof ’pcacchyd’ into ’temph’

put ’sumhyd’ / ’temph’ into ’acchyd’

show ’acchyd’

! polar residues (without glycine)

put ’pcacc’ with residues:ser*,thr*,cy*,tyr*,asn*,gln*,hi*,trp*: -

into ’pcaccpol’

put ’pcaccpol’ without residues:glne123: into ’pcaccpol’

show ’pcaccpol’

put sum ’pcaccpol’ into ’sumpol’

show ’sumpol’

put sizeof ’pcaccpol’ into ’tempo’

put ’sumpol’ / ’tempo’ into ’accpol’

show ’accpol’

! polar residues (with glycine)

put ’pcacc’ with residues:ser*,thr*,cy*,tyr*,asn*,gln*,hi*,trp*,gly*: -

into ’pcaccpolg’

put ’pcaccpolg’ without residues:glne123: into ’pcaccpolg’

show ’pcaccpolg’

put sum ’pcaccpolg’ into ’sumpolg’

show ’sumpolg’

put sizeof ’pcaccpolg’ into ’tempy’

put ’sumpolg’ / ’tempy’ into ’accpolg’

show ’accpolg’

! negative residues

put ’pcacc’ with residues:asp*,glu*,glne123: -

into ’pcaccneg’

show ’pcaccneg’

put sum ’pcaccneg’ into ’sumneg’

show ’sumneg’

put sizeof ’pcaccneg’ into ’tempn’

put ’sumneg’ / ’tempn’ into ’accneg’

show ’accneg’

! positive residues

put ’pcacc’ with residues:lys*,arg*: -

into ’pcaccpos’

show ’pcaccpos’

put sum ’pcaccpos’ into ’sumpos’

Impact 4.0 Command Reference Manual 205

Chapter 5: Advanced Input Scripts

show ’sumpos’

put sizeof ’pcaccpos’ into ’tempp’

put ’sumpos’ / ’tempp’ into ’accpos’

show ’accpos’

! glycines

put ’pcacc’ with residues:gly*: -

into ’pcaccgly’

show ’pcaccgly’

put sum ’pcaccgly’ into ’sumgly’

show ’sumgly’

put sizeof ’pcaccgly’ into ’tempg’

put ’sumgly’ / ’tempg’ into ’accgly’

show ’accgly’

!! percent solvent access. = acc* X 100

end

The subroutine called by Impact:

:percent

! Subroutine contains surface area values for residues in

! an extended chain as calculated from Gly-X-Gly tripeptides

! accessibility = surface area(X) in protein / surface area(X) in Gly-X-Gly

put ’surfres’ with species:1:residues:ala*: into ’surfala’

put ’surfala’ / 124.51 into ’surfala’

put ’surfres’ with species:1:residues:arg*: into ’surfarg’

put ’surfarg’ / 267.80 into ’surfarg’

put ’surfres’ with species:1:residues:asn*: into ’surfasn’

put ’surfasn’ / 170.98 into ’surfasn’

put ’surfres’ with species:1:residues:asp*: into ’surfasp’

put ’surfasp’ / 157.45 into ’surfasp’

put ’surfres’ with species:1:residues:cyx*: into ’surfcyx’

put ’surfcyx’ / 154.57 into ’surfcyx’

put ’surfres’ with species:1:residues:gln*: into ’surfgln’

put ’surfgln’ / 202.64 into ’surfgln’

put ’surfres’ with species:1:residues:glu*: into ’surfglu’

put ’surfglu’ / 191.12 into ’surfglu’

put ’surfres’ with species:1:residues:gly*: into ’surfgly’

put ’surfgly’ / 91.17 into ’surfgly’

put ’surfres’ with species:1:residues:hi*: into ’surfhis’

put ’surfhis’ / 205.33 into ’surfhis’

put ’surfres’ with species:1:residues:ile*: into ’surfile’

put ’surfile’ / 192.73 into ’surfile’

put ’surfres’ with species:1:residues:leu*: into ’surfleu’

put ’surfleu’ / 196.76 into ’surfleu’

put ’surfres’ with species:1:residues:lys*: into ’surflys’

put ’surflys’ / 236.21 into ’surflys’

put ’surfres’ with species:1:residues:met*: into ’surfmet’

put ’surfmet’ / 211.14 into ’surfmet’

206 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

put ’surfres’ with species:1:residues:phe*: into ’surfphe’

put ’surfphe’ / 231.92 into ’surfphe’

put ’surfres’ with species:1:residues:pro*: into ’surfpro’

put ’surfpro’ / 158.96 into ’surfpro’

put ’surfres’ with species:1:residues:ser*: into ’surfser’

put ’surfser’ / 138.10 into ’surfser’

put ’surfres’ with species:1:residues:thr*: into ’surfthr’

put ’surfthr’ / 166.49 into ’surfthr’

put ’surfres’ with species:1:residues:trp*: into ’surftrp’

put ’surftrp’ / 270.13 into ’surftrp’

put ’surfres’ with species:1:residues:tyr*: into ’surftyr’

put ’surftyr’ / 244.87 into ’surftyr’

put ’surfres’ with species:1:residues:val*: into ’surfval’

put ’surfval’ / 167.57 into ’surfval’

!!

put ’surfala’ into ’pcacc’

put ’pcacc’ append ’surfarg’ into ’pcacc’

put ’pcacc’ append ’surfasn’ into ’pcacc’

put ’pcacc’ append ’surfasp’ into ’pcacc’

put ’pcacc’ append ’surfcyx’ into ’pcacc’

put ’pcacc’ append ’surfgln’ into ’pcacc’ ! collect accessibility

put ’pcacc’ append ’surfglu’ into ’pcacc’ ! values into table

put ’pcacc’ append ’surfgly’ into ’pcacc’ ! ’pcacc’

put ’pcacc’ append ’surfhis’ into ’pcacc’

put ’pcacc’ append ’surfile’ into ’pcacc’

put ’pcacc’ append ’surfleu’ into ’pcacc’

put ’pcacc’ append ’surflys’ into ’pcacc’

put ’pcacc’ append ’surfmet’ into ’pcacc’

put ’pcacc’ append ’surfphe’ into ’pcacc’

put ’pcacc’ append ’surfpro’ into ’pcacc’

put ’pcacc’ append ’surfser’ into ’pcacc’

put ’pcacc’ append ’surfthr’ into ’pcacc’

put ’pcacc’ append ’surftrp’ into ’pcacc’

put ’pcacc’ append ’surftyr’ into ’pcacc’

put ’pcacc’ append ’surfval’ into ’pcacc’

return

5.4.4 Radius of Gyration

This example demonstrates the calculation of the radius of gyration, a mea-
sure of the overall size the protein. This example uses the concat command
operating on lists to build the PDB file names and subsequently reads the
previously written files using the create task. The plot subtask of task
table is used to write the simulation times in psec and the values calculated
for the radius of gyration to a file.

write file rg.out -

title calculation of protein radius of gyration *

create

Impact 4.0 Command Reference Manual 207

Chapter 5: Advanced Input Scripts

build newres lysb file lysb glne file glne

build primary name alc type prot -

lysb gln leu thr lys cyx ala leu ser hid glu leu asn -

asp ile ala gly tyr arg asp ile thr leu pro glu trp -

leu cyx ile ile phe hid ile ser gly tyr asp thr gln -

ala ile val lys asn ser asp hid lys glu tyr gly leu -

phe gln ile asn asp lys asp phe cyx glu ser ser thr -

thr val gln ser arg asn ile cyx asp ile ser cyx asp -

lys leu leu asp asp asp ile thr asp asp ile met cyx -

val lys lys ile leu asp ile lys gly ile asp tyr trp -

leu ala hid lys pro leu cyx ser asp lys leu glu gln -

trp tyr cyx glu ala glne end

build cross name alc resn 6 atna sg resn 120 atna sg -

name alc resn 28 atna sg resn 111 atna sg -

name alc resn 73 atna sg resn 91 atna sg -

name alc resn 61 atna sg resn 77 atna sg

quit

setmodel

read parm file paramstd.dat noprint

enrg parm cutoff 78.0 diel 1.0 nodist listupdate 10

setp

mmec

quit

quit

put 1 into ’counter’

while ’counter’ le 880

! Build filename from counter value

put ($gpla_$ concat (concat (char ’counter’) $.pdb$)) into ’pdbfile’

! Use create task to read pdb file

create

read coord impact name alc file ’pdbfile’

quit

reset ’cord’

reset ’com’

reset ’r2’

reset ’sr’

reset ’top’

reset ’rg’

!! Calculate center of mass

put sum ’mass’ into ’tmass’

put ’cord’ * ’mass’ into ’temp’

put sum ’temp’ into ’stemp’

put ’stemp’ / ’tmass’ into ’com’

!show ’com’

!! Sum squared coordinates with com removed

put ’cord’ - ’com’ into ’r2’

put ’r2’ * ’r2’ into ’r2’

208 Impact 4.0 Command Reference Manual

Chapter 5: Advanced Input Scripts

put ’r2_x’ + ’r2_y’ into ’sr’

put ’sr’ + ’r2_z’ into ’sr’

!show ’sr’

!! Calculate radius of gyration

put ’sr’ * ’mass’ into ’top’

put ’top’ / ’tmass’ into ’rg’

put sum ’rg’ into ’rg’

put ’rg’ pow 0.5 into ’rg’

!show ’rg’

put ’rglist’ append ’rg’ into ’rglist’ ! collect data

put ’time’ append ’counter’ into ’time’ ! at each psec

put ’counter’ + 1 into ’counter’

endwhile

table

plot ’time’ ’rglist’ tabular file rg.dat

quit

end

Impact 4.0 Command Reference Manual 209

Chapter 5: Advanced Input Scripts

210 Impact 4.0 Command Reference Manual

Chapter 6: Trouble Shooting

6 Trouble Shooting

This chapter describes some common problems with starting or running
Impact. Naturally, we hope that you will never need to use this chapter.
However, if you have problems using Impact, you may find useful advice
here. You may also contact us using the information on the cover page.

6.1 Problems Getting Started
This section describes how to overcome some problems in starting up your
Impact jobs. The next section describes problems that occur during job
execution.

6.1.1 Environment variable SCHRODINGER not set.

Before running Impact, or any Schrödinger product, on any particular
machine, you must set the environment variable SCHRODINGER to your
Schrödinger installation directory. If this environment variable is not set
correctly, you will be told directly:

unix% /usr/apps/schrodinger/impact -i dynamics_job.inp

ERROR: SCHRODINGER is undefined

unix%

Or if the program stops at automatic atom-typing for ligand molecules, it
will prints out message like this:

%IMPACT-I (readhead): input file 23 has no header information.

%IMPACT-I (readhead): input file 23 has no header information.

PARM read from file paramstd.dat

Environment variables MMSHARE_EXEC and OPLS_DIR not defined

Set OPLS_DIR so that ATOMTYPE can find data files

It is easy to fix this problem, first check whether SCHRODINGER is set or not,
enter the command

% echo $SCHRODINGER

If you see this environment variable is not set or set to a wrong directory,
change it to a right directory. If you are running C shell (csh) or tcsh, type
the command

% setenv SCHRODINGER your Schrödinger installation directory

or if you are using bash, sh or ksh, type the command
% export SCHRODINGER=your Schrödinger installation directory

6.1.2 Bad residue label
The current Impact program requires the user to separate a ligand molecule
from the protein in the input PDB files. This means PDB files for proteins
must contain only the regular amino acids and buried waters, but not a
nonstandard residue name unless it has previously been defined. Here is an
example of a PDB file containing a residue named NOA (NAPHTHYLOXY-
ACETYL):

Impact 4.0 Command Reference Manual 211

Chapter 6: Trouble Shooting

...............

...............

ATOM 1485 CD2 NOA I 201 4.098 9.733 20.948 0.50 20.67

ATOM 1486 CD1 NOA I 201 6.413 10.411 21.013 0.50 20.84

ATOM 1487 CE1 NOA I 201 6.706 9.320 21.850 0.50 21.17

ATOM 1488 CZ1 NOA I 201 5.694 8.437 22.228 0.50 20.95

ATOM 1489 CE2 NOA I 201 4.385 8.645 21.778 0.50 21.01

ATOM 1490 CZ3 NOA I 201 1.771 9.028 20.869 0.50 21.10

ATOM 1491 CE3 NOA I 201 2.786 9.926 20.504 0.50 20.98

ATOM 1492 CZ2 NOA I 201 3.379 7.740 22.165 0.50 21.13

ATOM 1493 CH2 NOA I 201 2.067 7.934 21.703 0.50 21.20

ATOM 1494 C NOA I 201 4.312 13.086 17.860 0.50 18.24

ATOM 1493 CH2 NOA I 201 2.067 7.934 21.703 0.50 21.20

ATOM 1494 C NOA I 201 4.312 13.086 17.860 0.50 18.24

ATOM 1495 O NOA I 201 5.155 13.679 17.160 0.50 17.86

..............

..............

The program will stop because (we presume) there is no template file for
residue NOA. The message printed out in the primary output file looks like
this:

*** BAD RESIDUE LABEL NOA

%IMPACT-E (die): Fatal error at line 5

At present, the user has to separate the NOA molecule from the protein
residues in the PDB file, and read it in through type ligand:

build primary name hiv type protein read file hiv.pdb

build primary name noa type ligand read file noa.pdb

6.2 Runtime Problems
This section documents some situations when an Impact job may terminate
prematurely.

6.2.1 SHAKE problems
SHAKE is a commonly used algorithm for constraining bond lengths and (or)
bond angles in protein or solvent molecules, such as water. It is especially
useful for rigid water models such as SPC, TIP3P, and TIP4P. However,
the algorithm is only useful for small perturbations from their equilibrium
values. If the bond lengths are too far away from their equilibrium values,
the algorithm will encounter problems with numerical instability:

%IMPACT-W (ishake): SHAKE was not accomplished within 1000 iterations

%IMPACT-W (ishake): SHAKE was not accomplished within 1000 iterations

%IMPACT-W (ishake): SHAKE was not accomplished within 1000 iterations

The problem is usually due to a too-large timestep in molecular dynamics,
or the molecular structure is not well minimized. Thus, extremely large
repulsion forces might appear in van der Waals interactions, which results in
a large move in bond lengths. The way to avoid this problem is to check your
structure first, make sure it is well defined and minimized to some extent,
then try again. If it still fails, use smaller time steps.

212 Impact 4.0 Command Reference Manual

Chapter 6: Trouble Shooting

6.2.2 FMM problems
If you specify fmm in setmodel task, the program will call the FMM method
for calculating electrostatic interactions. Here is a common problem:

%IMPACT-W(FMM_load_bodies): particle out of box in FMM

%IMPACT-W(FMM_load_bodies): particle out of box in FMM

%IMPACT-W(FMM_load_bodies): particle out of box in FMM

%IMPACT-E(FMM_load_bodies) Too many particles out of box, check your timestep!

The problem usually appears when some particles move too much inside one
r-RESPA big time step (or one VERLET time step). The box size, which is
updated after every big time step in r-RESPA, might not be large enough
to hold all the particles, thus some particles move out of the range of box
size. Of course, the real underlying reason for this problem is similar to
that in SHAKE, a too-large timestep in molecular dynamics, or an ill-defined
molecular structure is used. Thus, the way to avoid this problem is similar
to that in SHAKE, i.e., check your structure first, make sure it is well defined
and minimized to some extent, then try again. If the problem still appears,
use smaller time steps.

6.2.3 Atom overlap problems
The program may stop if two or more atoms overlap in space. Impact checks
for atom overlaps in the very beginning when non-bonded lists are generated.
Here is one example error message:

%IMPACT-I(code): found all bond parameters for system

%IMPACT-I(code): found all bend parameters for system

%IMPACT-I(code): found all tors parameters for system

Moment of inertia tensor

0.46449E+07 0.90790E+06 0.87475E+06

0.90790E+06 0.45322E+07 -0.61956E+06

0.87475E+06 -0.61956E+06 0.43931E+07

Moment of inertia tensor after diagonalizing

0.29204E+07 0.90495E-10 0.17211E-08

0.90495E-10 0.50757E+07 -0.17493E-08

0.17211E-08 -0.17493E-08 0.55741E+07

Maximum distance along x,y,z-axis

0.61017E+02 0.38485E+02 0.35377E+02

Solutes are rotated 90 degree about y-axis

Maximum distance along x,y,z-axis after the rotation

0.35377E+02 0.38485E+02 0.61017E+02

%IMPACT-I (trans): The system will be rotated to align the principal

axis with the largest eigenvalue along the diagonal

Maximum distance along coordinate axis after the rotation

0.46611E+02 0.44300E+02 0.45865E+02

%IMPACT-I (allocnb): Verlet list size = 261232

%IMPACT-I (allochb): Hydrogen bond list size = 206421

%IMPACT-E (die): At line 29

%IMPACT-E: TWO ATOMS HAVE THE SAME COORDINATES

The program stops because it finds that two or more atoms overlap. This
may happen when missing H atoms generated by Impact sit on top of other

Impact 4.0 Command Reference Manual 213

Chapter 6: Trouble Shooting

H atoms that already exist in a PDB file (usually those H atoms were gener-
ated by other programs, such as MacroModel or ChemEdit, etc.). Another
possible cause of this problem is that some atoms’ coordinates were not ini-
tialized to correct values, but are all zero. This is especially likely to happen
in simulations with explicit solvent. The program needs to know the coor-
dinates of solvent water molecules either by reading from a restart file or
by reading from an old equilibrated water box (e.g., spchoh.dat, tip4p.dat).
If a restart file is not used, no water atom coordinates will be assigned and
FORTRAN code will initialize them all to zero. Thus they “overlap” in space.
Here is an example of an incorrect input file:

!! Timings for testing protein/water system

write verbose 3 file test.out title test *

CREAT

build primary name test type protein read file test.pdb

read coordinates name test brookhaven file test.pdb

build solvent name agua type spc nmol 10000 h2o

QUIT

SETMODEL

setpotential

mmechanics

quit

energy molcutoff name agua

read parm file paramstd.dat noprint

!==> solvent old file spchoh.dat bx 68 by 68 bz 68

solute translate rotate diagonal

enrg parm cutoff 9.0 -

listupdate 20 diel 1.0 nodist print 1

enrg periodic name test bx 68 by 68 bz 68

enrg periodic name agua bx 68 by 68 bz 68

enrg cons bond

QUIT

MINIMIZE

input cntl mxcyc 1000

steepest dx0 0.01 dxm 1.0

!==> read restart box coordinates formatted file testh2o.min

run

write restart box coordinates formatted file testh2o.min

QUIT

END

The solution is to uncomment either of the two commented out (!==> ****)
command lines.

6.2.4 Atomtyping problems
The automatic atomtyping code will assign atom types and parameters for
virtually any kind of molecule or ion if the structure is well defined, i.e.,
if all missing H atoms are included and bond lengths are reasonable. If a

214 Impact 4.0 Command Reference Manual

Chapter 6: Trouble Shooting

structure is not well defined, i.e., if there are too many isolated atoms or too
many atoms with bonds exceeding their maximum numbers, the atomtyping
code will get confused. Here is an example of an output message:

%IMPACT-I(newres): Input template file is a PDB file

%IMPACT-I(newres): build template for this molecule

Warning: too many bonds for atom H25 : nconn=2 max=1

Warning: too many bonds for atom H26 : nconn=3 max=1

Warning: too many bonds for atom H27 : nconn=3 max=1

Warning: atom H30 is isolated

Warning: atom H31 is isolated

Warning: atom H32 is isolated

Warning: atom H33 is isolated

Warning: too many bonds for atom H37 : nconn=2 max=1

Warning: too many bonds for atom H38 : nconn=2 max=1

Warning: too many bonds for atom H40 : nconn=2 max=1

Warning: too many bonds for atom H41 : nconn=2 max=1

Warning: atom H42 is isolated

Warning: atom H43 is isolated

Warning: atom H44 is isolated

Error: Too many exceptions in connection table, check your molecule

Impact will try to adjust the connection table to resolve these issues, but
will stop if too many problems are encountered. Such problems can occur
when structures are used that have been converted from other programs,
especially structures converted from 2D to 3D. A solution may be to use a
program that has a builder, such as Maestro or ChemEdit, to rebuild the
molecule.

Impact 4.0 Command Reference Manual 215

Chapter 6: Trouble Shooting

216 Impact 4.0 Command Reference Manual

Appendix A: Impact Data and Parameter Files

Appendix A Impact Data and Parameter
Files

This appendix describes some of the auxiliary files that come with Impact.

A.1 Datafile Info
Summary of Impact data files:
• Residue database files: These files contain structural information for

residues that have been predefined for use in Impact.
• Energy parameter files: These files contain the parameters for the energy

functions. The file ‘paramstd.dat’ contains the current parameters.
• Boxes of water: The file ‘spchoh.dat’ contains a coordinate set for 216

water molecules with a periodic box size of 18.62063 Å3.

A.2 Residue Database Description
The purpose of this section is to give a description of the residue database,
which consists of the formatted files that are described below. The data-
base presently contains the data files for the 20 L-amino acids, the D- and
R-nucleotides, water, and other common groups that are important in molec-
ular modeling. Any user defined residue must be in the same format. The
data is expected in the given order although it is possible to use free format
as long as the order of the numbers is correct. User defined residues may be
created using the make subtask in task create. All the residues are specified
by their three letter amino acid code, and any new residues may be created
using the same format as shown below. Because this portion of Impact is is
written in FORTRAN, the format statements appropriate to the datatabase
files are shown as well. They are set off from the text using boxes.

A.2.1 Residue File Example
The formatted residue file for ALA is shown below. Note that the program has
been modified to allow free-format residue template files. Thus, the restric-
tive fixed-field format shown below is no longer necessary; this is especially
helpful if you want to build a template file by hand.

* DATABASE FILE FOR ALANINE

*

ALA 10 9 14 17 39

1 0 M N N 10 1.335000 116.600000 180.000000

2 1 E H HN 2 1.010000 119.800000 0.000000

3 1 M CT CA 10 1.449000 121.900000 180.000000

4 3 E HC HA 4 1.090000 109.500000 300.000000

5 3 3 CT CB 8 1.525000 111.100000 60.000000

6 5 E HC HB1 6 1.090000 109.500000 60.000000

7 5 E HC HB2 7 1.090000 109.500000 180.000000

Impact 4.0 Command Reference Manual 217

Appendix A: Impact Data and Parameter Files

8 5 E HC HB3 8 1.090000 109.500000 300.000000

9 3 M C C 10 1.522000 111.100000 180.000000

10 9 E O O 10 1.229000 120.500000 0.000000

-0.4630 0.2520 0.0350 0.0480 -0.0980 0.0380 0.0380 0.0380

0.6160 -0.5040

9 4 7 6 5 3 2 1 1 1

2 3 4 5 6 7 8 9 10

3 4 5 9

4 5 6 7 8 9 10

5 6 7 8 9 10

6 7 8 9 10

7 8 9

8 9

9

10

0

1 2 1 3 3 4 3 5 3 9 5 6

5 7 5 8 9 10

1 3 4 1 3 5 1 3 9 2 1 3 3 5 6

3 5 7 3 5 8 3 9 10 4 3 5 4 3 9

5 3 9 6 5 7 6 5 8 7 5 8

-1 3 1 -2 1 3 5 6 1 3 5 7 1 3 5 8

1 3 9 10 2 1 3 4 2 1 3 5 2 1 3 9

3 11 9 -10 4 3 5 6 4 3 5 7 4 3 5 8

4 3 9 10 5 3 9 10 6 5 3 9 7 5 3 9

8 5 3 9

(The FORTRAN format statement for each line is indicated underneath the
verbatim listing.)

A.2.2 Title card
* TITLE CARD (S)

*

A80

A blank line indicates end of title cards.

A.2.3 Residue name
ALA 10 9 14 17 39

(A4,5I5)

218 Impact 4.0 Command Reference Manual

Appendix A: Impact Data and Parameter Files

This is the first line of the file. It contains the residue name as it will
appear in the input for create. This is followed by the number of atoms,
the number of bonds, bond angles, and torsion angles. Finally, the total
number of nonbonded exclusions (described below) appears in this line.

A.2.4 Tree structure
1 0 M N N 10 1.335000 116.600000 180.000000

2 1 E H HN 2 1.010000 119.800000 0.000000

3 1 M CT CA 10 1.449000 121.900000 180.000000

4 3 E HC HA 4 1.090000 109.500000 300.000000

5 3 3 CT CB 8 1.525000 111.100000 60.000000

6 5 E HC HB1 6 1.090000 109.500000 60.000000

7 5 E HC HB2 7 1.090000 109.500000 180.000000

8 5 E HC HB3 8 1.090000 109.500000 300.000000

9 3 M C C 10 1.522000 111.100000 180.000000

10 9 E O O 10 1.229000 120.500000 0.000000

(2I5,1X,3A4,I5,3F12.6)

This section contains information about the tree structure of the amino acid.
The first column is the atom number. The second column is the atom that
atom i is joined to (ijoin). The third number represents what position
the atom holds in the tree structure (M-main chain atom, S-side chain atom,
B-branch atom, 3-three-way branch atom, E-end atom). The fourth column
is the atom type (used to match entries in the parameter file). The fifth
column is the unique atom name (or graph name). The next column contains
a variable (rotat) that can best be described as the number of the last atom
that is affected if the atom in question is rotated. Finally this is followed by
the r, θ and φ for this atom.

A.2.5 Charges
-0.4630 0.2520 0.0350 0.0480 -0.0980 0.0380 0.0380 0.0380

0.6160 -0.5040

(8F8.4)

This line contains the charge for each atom of the residue.

Impact 4.0 Command Reference Manual 219

Appendix A: Impact Data and Parameter Files

A.2.6 Nonbonded array
9 4 7 6 5 3 2 1 1 1

(16I4)

This line contains the pointer into the nonbonded array. It says how many
nonbonded exclusions each atom has in the excluded atom array. See expla-
nation below.

A.2.7 Excluded atom array
2 3 4 5 6 7 8 9 10

3 4 5 9

4 5 6 7 8 9 10

5 6 7 8 9 10

6 7 8 9 10

7 8 9

8 9

9

10

0

(16I4)

This is the excluded atom array. A new line is used for the nonbonded
exclusions for each atom to aid the user. The excluded atom array lists atoms
to which one does not want to calculate nonbonded interactions. Typically,
these are atoms that are 3 or fewer bonds away from the original atom and
that are involved in bond, angle or torsion interactions. The list moves down
the tree so that if one does not want to calculate the nonbonded interaction
between atoms 4 and 6, line number four of the list would include 6, but line
number six of the list would not include 4.

A.2.8 Bonded atom list
1 2 1 3 3 4 3 5 3 9 5 6

5 7 5 8 9 10

(6(2I4,3X))

These lines contain all pairs of atoms that are bonded to each other. As
many lines as needed can be used.

220 Impact 4.0 Command Reference Manual

Appendix A: Impact Data and Parameter Files

A.2.9 Bond angles
1 3 4 1 3 5 1 3 9 2 1 3 3 5 6

3 5 7 3 5 8 3 9 10 4 3 5 4 3 9

5 3 9 6 5 7 6 5 8 7 5 8

(5(3I4,3X))

These lines contain the angles for this residue.

A.2.10 Dihedral angles
-1 3 1 -2 1 3 5 6 1 3 5 7 1 3 5 8

1 3 9 10 2 1 3 4 2 1 3 5 2 1 3 9

3 11 9 -10 4 3 5 6 4 3 5 7 4 3 5 8

4 3 9 10 5 3 9 10 6 5 3 9 7 5 3 9

8 5 3 9

(4(4I4,3X))

These lines contain the dihedral angles for the residue. There are several
special meanings for the - sign in a dihedral angle listing.

-1 x y z This torsion angle is a torsion angle that connects the current
residue to the last main chain atom of the previous residue.

w x y -z This is called an improper torsion and is used to help keep the
three atoms attached to a central, trigonal atom in the same
plane. The proper order of this angle is Cn1 Cn2 C -H, where
Cn1 and Cn2 are the neighboring carbons to either side and C
is the carbon to which the hydrogen is attached.

w x -y z This notation is used to avoid double counting 1,4-interactions
in rings of size 6 or smaller; this provision is needed because
1,4-interactions and torsions share the same list within Impact.
For an example, if a benzene ring has the six atoms C1, C2, C3,
C4, C5 and C6, the possible torsions are: 1 2 3 4; 2 3 4 5; 3 4
5 6; 4 5 6 1; 5 6 1 2; 6 1 2 3. The last three sets are redundant
for 1,4-interactions and should be written as follows: 4 5 -6 1; 5
6 -1 2; 6 1 -2 3. The negative sign in the notation for improper
torsions (see above) also serves to ensure that these (spurious)
“1,4-interactions” are not counted.

Impact 4.0 Command Reference Manual 221

Appendix A: Impact Data and Parameter Files

A.3 Energy parameter file description
The input for the energy function parameter file for amber86 is free-format
and is read by the routine parmrdr. Below is an abbreviated version of the
file that contains samples of the necessary input. Atom types are always
character strings. For cases where more than one atom type is needed, the
atom types are separated by a dash (-). Numbers are always separated by
a space.
• First a title is read. Each card of the title begins with a ‘*’ and the last

card of the title is a ‘*’ followed by one or more spaces.
• Second, the atom types and their atomic masses are read in. Atom type

(character data type) followed by the atomic mass in amu and atomic
number.

• Third, the bond stretching parameters are read in. This section must
begin with bond and must be present even if there are no bond param-
eters to be read. Then the bond parameters are read in. Each record
consists of 2 atom types followed by the harmonic force constant and
equilibrium distance (units are kcal/mole × Å and kcal/mole, respec-
tively).

• Fourth, the angle bending parameters are read in. This section must
begin with thet. Then, for each angle parameter 3 atom types are read
in followed by the harmonic force constant and the equilibrium angle.
The force constant is in kcal/mole-radian and the angle is in degrees.

• Fifth, the proper torsion interactions are read in following the keyword
phi. The proper torsions as specified by giving by 4 atom types followed
by a divisor nd, a barrier Vn, a phase (sign), and the periodicity pn. The
phase is read in degrees but is immediately converted to a sign by taking
the cos(phase). The phase should only be 0 or 180. The functional form
assumed is

e =
Vn

nd

(1 + sign cos(pnφ))

where φ is the torsional angle. General dihedral types may be specified
using X instead of specific atom types for the first and last atoms.

• Sixth, the improper torsions are read in. iphi is the keyword used to
initiate this section. The input is the same as for the proper torsion
except that nd is not read. General improper torsions may be specified
by using X for the first, second, or fourth positions; the third position
corresponds to the “central” atom.

• Seventh, the non-bonded parameters are read in beginning with the
keyword nbon. The input is the atom type, σ/2 (half the Lennard-Jones
distance at the zero-crossing point), and ε (the well depth). Impact
calculates and stores 4ε. The functional form for the Lennard-Jones

222 Impact 4.0 Command Reference Manual

Appendix A: Impact Data and Parameter Files

interactions is

e = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]
.

• Last, for amber86 h-bond parameters are read in beginning with hbond.
The two atom types are read followed by the A and B parameters. The
functional form is

e =
A

r12
− B

r10
.

The last card must be end.

A.4 Energy example
* FORMATED PARAMETER INPUT FILE FOR IMPACT20 9/2/87

* PARAMETERS FROM ALLATOM FORCE FIELD OF PETER KOLLMAN 1985

*

BR 79.90

C 12.01

CA 12.02

CB 12.01

BOND

NC -NC 100. 1.15 AZA -azide ion resonance appx. ! ADDED TO PAK

S -OS 100. 1.5 from a crystal stru !

LP -S 600. 0.679 !

LP -SH 600. 0.679 !

THET

C2 -C -N 70. 116.6 GLY GELIN

C2 -C -O 80. 120.4 ASN(OL) GELIN

C2 -C -O2 70. 117. GLU(OL) SCH JPC 79,2379

PHI

X -C -C2 -X 2 0.0 180. 3.

X -C -CA -X 4 5.3 180. 2.

X -C -CB -X 4 4.4 180. 2.

X -C -CD -X 2 5.3 180. 2.

IPHI

H2 -CH -N2 -H2 0.0 180. 3.

C3 -CH -NT -C 14.0 180. 3.

CH -CH -C -N3 7.0 180. 3.

C2 -CH -C -N3 7.0 180. 3.

C3 -CH -CA -C3 7.0 180. 3.

X -C2 -CH -X 14.0 180. 3.

X -CH -CH -X 14.0 180. 3.

NBON

H 0.8908987 0.0200000

HO 0.8908987 0.0200000 ***** note that these are sigma/2 and

H2 0.8908987 0.0200000 epsilon (i.e. well-depth)

H3 0.8908987 0.0200000

Impact 4.0 Command Reference Manual 223

Appendix A: Impact Data and Parameter Files

HBON

H -O 7557.00 2385.00

H -OH 7557.00 2385.00

H -NB 7557.00 2385.00

H -S 265720.00 35429.00

H -SH 265720.00 35429.00

END

A.5 Units
This chapter explains the units employed in Impact.

1. The use of gram/mole (g), Ångstrom (Å) and picosecond (psec) do
not naturally lead to kcal/mole, which is consistently employed for the
energy parameter in Impact. Namely,

1
kcal
mole

=
4.184 · 1010 erg

mole

= 4.184 · 1010 g cm2

sec2

= 4.184 · 1010g (108 Å)2/(1012 psec)2

= 4.184 · 102g Å
2
/psec2.

That is, if you use psec for time, your energy expression is a factor
4.184 · 102 off. Therefore, conversion has been made for the time step
(and the relaxation time for the temperature scaling) in the program so
that the factor is canceled. The conversion factor is

√
4.184× 100 (see

Section 3.2 [Dynamics], page 79).
2.

1esu =
√

cm erg

=
√

108 Å 6.023 · 1023 erg/mole

=
√

108 Å 6.023 · 1023/1010 kjoule/mole

=
√

108 Å 6.023 · 1023/(1010 × 4.184) kcal/mole

= 3.794 · 1010
√

Å kcal/mole

Electronic charge:

4.80296 · 10−10esu = (4.80296/1010)(3.794 · 1010)
√

Å kcal/mole

= 18.223
√

Å kcal/mole

224 Impact 4.0 Command Reference Manual

Appendix A: Impact Data and Parameter Files

Quantities Unit (abbrev.)
Relation with
other units

length Å 10−8 cm

angles degree (◦) 180◦ = π rad

time picoseconds (psec) 10−12 s
(1)

mass gram
mole (g)

energy kcal
mol 4.18 kjoule

mol

force kcal
Å mol

(bonds)

kcal
rad mol (angles)

force constants kcal
Å2 mol

(bonds)

kcal
rad2 mol (angles)

charge
√

Å kcal
mole 1.0 esu = 3.794 · 1010

√
Å kcal
mole

(2)

Lennard-Jones σ Å
(3)

Lennard-Jones ε kcal
mol

(3)

3. The formula for Lennard-Jones interaction is:

U(r) = 4ε

{(
σ

r

)12

−
(
σ

r

)6
}

where σ is the interatomic distance at which U(r) = 0, and ε is the
depth of the potential.

Impact 4.0 Command Reference Manual 225

Appendix A: Impact Data and Parameter Files

226 Impact 4.0 Command Reference Manual

Appendix B: Task Plot

Appendix B Task Plot

Because it is expected that plot will significantly change or be replaced in
a future release, it has been relegated to the appendix.

B.1 Subtask Plot
The object of this subtask is to parse data necessary for the the plotting
routines used in Impact. In order to get a plot, all that is necessary to type
is the word plot; the remaining parameters are set to defaults that should
give you a reasonable plot. All the plotting commands listed below are used
in a standard manner throughout Impact.
Several devices are supported:

• plot [lineprint [file filnam] | [postscript | delay | tabular] file fil-

nam

Lineprint causes output to be generated for a wide cartridge ascii line
printer device (or any text output device with 132 columns) and, of course,
it uses dot graphics. The postscript device is only for line graphics. The
only other device-specific option available is paper. Note that you can not
mix devices within the same plot subtask, and that the file option should
always be used for device postscript, while it is optional for the device
lineprint. The keyword delay should be specified when the data is gener-
ated, and must include the file to which to write the plot-data output; the
resultant formatted data file can be read into Impact using the read option.
Similarly, the keyword tabular instructs Impact to output the data in a
simple tabular form, as expected by many modern packages. Notice that no
information about titles, legends, etc., is preserved with this format.

• plot [portrait | landscape] [small | large]

Portrait is the default, and this option selects the vertical side to be the
long axis in an 8 by 11 printout. The option landscape rotates the plot
90 degrees. Note that you must specify either small or large with this
option. Small is the default, and equally scales the x and y axes, while the
keyword large scales the X and Y axes to use as much of the papers surface
as available. (Margins of at least one inch are always maintained). The
labels for the axes and a title can be specified as arguments to the keywords
title, xlabel and ylabel. Titles appear on the top of the plots.

• plot title string xlabel x-label ylabel y-label

The way numerical labels are printed on the axis can be controlled with the
keywords scientific, field1 and field2. The first, as its name implies,
forces scientific notation to be used; the latter two control the number of
characters before and after the decimal place (default to 5 and 3, respec-
tively).

• plot scientific [field1 num field2 num]

The appearance of tick marks on the axis can be further controlled with
the keyword nice. When set to 1, the program places tick marks at even

Impact 4.0 Command Reference Manual 227

Appendix B: Task Plot

values, and if set to 0 it places tick marks at evenly divided points between
minimum and maximum values. (This works only for dot graphics.)

• plot nice [0 | 1 | nil] -

xmin xmin xmax xmax -

ymin ymin ymax ymax

When plotting on a character device the user should issue the point com-
mand, which takes an optional keyword to choose the character to be used
for the plots. The keyword key causes a table of keys to be printed in the
upper right hand corner. The the contour values are printed along with the
Greek and Roman symbols that mark each value in the contour graph.

• plot point [scharacter number | ccharacter character] -

[key | nokey]

When plotting on a line device this command should be used.
• plot curve

Contour plots can also be generated.
• plot contour contours [automatic | at list of values] -

[vmin vmin vmax vmax]

The keywords vmin and vmax set the minimum and maximum values for the
data that will be contoured (the the program will automatically calculate
these values if they are not provided). The keyword automatic makes the
number of contours set with contour evenly spaced between vmin and vmax.
If at is followed by a list of values, they will instead be used to generate the
contours.
Three-dimensional plots seem also possible.

• plot surface [level2d | level3d] [framed] -

[theta theta phi phi distance d]

The keyword surface selects a hidden-line-removal algorithm. The key-
words level2d and level3d control how ‘fancy’ the plot will be: for level2d
a plot of the data is put on the top half of the page and a the corresponding
2D contour graph drawn as a plane is drawn on the bottom half of the page.
For level3d, a model of the current molecule is plotted on the top third of
the page. In the middle third a surface graph is placed and on the bottom
third the corresponding 2D contour graph drawn as a plane is drawn. Note
the the graph’s generating structural data must accompany the graph. The
keywords theta, phi and distance set the viewpoint that is used to gener-
ate the 3D plot. Theta is given in degrees, and refers to the viewers rotation
along the x axis. The default is 40◦. Phi is given in degrees, and refers to
the viewers rotation along the y axis. The default is 40◦. Distance sets
the distance of the viewer from the projection plane used in surface graphs.
Using a movie projection screen as an model, the further away from the pro-
jector, the larger the image will be. The default is 800.0 (data is normalized
to 800 and should fill the surface with some room to spare). Note that this
option will not work with level2d and level3d options. If framed is found,
the program frames the graph with four vertical lines marking the edges of
a surface graph, and prints a two point scale indicating highest and lowest

228 Impact 4.0 Command Reference Manual

Appendix B: Task Plot

values in the surface. (This can make understanding the surface graph much
easier.)

B.2 Subtask Read
This subtask reads a file of plottable data. The options 1d and 2d read,
respectively, data for (a) x − y plots or (b) for contour or 2-dimensional
plots. Both formatted or unformatted files can be specified. The option
number allows reading data for the plot number specified when multiple files
are included in the input.

• read [1d | 2d] [formatted | unformatted] file fname number num

B.3 Subtask Write
Write a file of plottable data in a format consistent with the read subtask.

• write [1d | 2d] [formatted | unformatted] file fname

B.4 Subtask Rewrite
This subtask writes a file of plottable data in a tabular format consistent
with a number of plotting packages, e.g., Cricketgraph for the Macintosh.

• rewrite formatted file fname

The file fname would have the format:
n (number of points)
x_1 y_1

x_2 y_2

...

x_n y_n

B.5 Subtask Reread
Read a file of plottable data in a tabular format consistent with other plotting
software (such as Cricketgraph on the Macintosh).

• reread formatted file fname

Impact 4.0 Command Reference Manual 229

Appendix B: Task Plot

230 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

Appendix C Example Input Files

This appendix contains a variety of example input files showing how Impact
is used. It is hoped that this will aid both new and experienced users by
providing templates that can be modified to suit their needs. It should be
noted, however, that the selection is not complete, i.e., not all tasks and
subtasks are well represented.
Each example is in its own section and begins with a commented input file
that has been specially formatted and annotated. These input files and the
corresponding Impact output files are distributed with the Impact software
package in the examples directory.

Impact 4.0 Command Reference Manual 231

Appendix C: Example Input Files

C.1 Tutorial Examples
This section illustrates some basic Impact simulations

C.1.1 OPLS Minimization

This example demonstrates the use of the OPLS all-atom force field (OPLS-
AA) in Impact. We read in a PDB-format file containing coordinates of
the “c7eq” conformation of the so-called alanine dipeptide (Acetyl-Alanyl-
N-Methylamide), minimized using OPLS-AA in another program. This pro-
gram calculated an energy of -41.8747 kcal/mol for this conformation.

Input files
c7eq-opls.inp Main input file
c7eq.pdb Initial coordinate file
paramstd.dat Parameter file

Output files
c7eq-opls.out Main output file
c7eq-opls min.pdb Minimized structure file

The set ffield command tells Impact to use the functional form of the
OPLS force field, and to find residue and parameter files in the appropriate
directory.

set ffield opls

write file c7eq-opls.out -

title OPLS Minimization of Alanine dipeptide c7eq conf*

Note that the residue names in the build primary command, and the pa-
rameter file name in read parm, are the standard ones. The database di-
rectory for OPLS contains files with the same names as those in the default
directory, but the contents of these files are the topologies and parameters
appropriate to OPLS.

create
build primary name ala2 type protein -

ace ala nma end

read coordinates brookhaven name ala2 file c7eq.pdb

build types name ala2

quit
setmodel
setpotential

mmechanics

quit

read parm file paramstd.dat noprint

232 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

energy parm cutoff 100.0 listupdate 10 dielectric 1.0 nodistance print 10

quit

Measure the phi, psi, and chi angles for the alanine residue, for later com-
parison.

analysis
measure

calc tors resnumber 1 atomname c resnumber 2 atomname n -

resnumber 2 atomname ca resnumber 2 atomname c -

tors resnumber 2 atomname n resnumber 2 atomname ca -

resnumber 2 atomname c resnumber 3 atomname n -

tors resnumber 2 atomname n resnumber 2 atomname ca -

resnumber 2 atomname cb resnumber 2 atomname hb1

quit

quit

Performing energy minimization serves two purposes. “Step 0” of the min-
imization gives the energy of the initial conformation, which can be com-
pared to that calculated by the other program. The subsequent minimiza-
tion should confirm that the minimum found by Impact is essentially the
same as the initial conformation. Neither the energy nor the geometry (as
measured by the torsions and by RMS coordinate deviations) should change
significantly.

minimize
conjugate

input cntl mxcyc 10000 rmscut 1.0e-4 deltae 1.0e-7

run

write pdb brookhaven name ala2 file c7eq-opls_min.pdb

quit
analysis
measure

Recalculate the torsions in the final state.
! phi, psi, and chi1 for alanine

calc tors resnumber 1 atomname c resnumber 2 atomname n -

resnumber 2 atomname ca resnumber 2 atomname c -

tors resnumber 2 atomname n resnumber 2 atomname ca -

resnumber 2 atomname c resnumber 3 atomname n -

tors resnumber 2 atomname n resnumber 2 atomname ca -

resnumber 2 atomname cb resnumber 2 atomname hb1

quit

Calculate RMS deviations between the final and initial states, first for all
atom coordinates and then for the peptide backbone.

rms name ala2 name ala2init pdb2 file c7eq.pdb compare all

rms name ala2 name ala2init pdb2 file c7eq.pdb compare bone -

print none

quit
end

Impact 4.0 Command Reference Manual 233

Appendix C: Example Input Files

C.1.2 Solvation Energy of Small Organic Molecules

This example illustrates the solvation energy calculation using continuum
solvation model pbf and sgb. Six small organic molecules are used for il-
lustration here, acetamide, acetone, benzene, dimethylamine, ethanol, and
methanol.

Input files
acetone.inp Main input file
paramstd.dat Parameter file
acetone.pdb PDB coordinate file

Output files
acetone.out Main output file

write file acetone.out -

title acetone solvation energy *

create
build primary name dim type auto read pdb file acetone.pdb

build types name dim

Set up the simulation system by using type auto to read the pdb file. The
second command performs automatic atomtyping on the molecule.

quit
setmodel
setpotential

mmechanics consolv pbf

Select the continuum solvation model, pbf. If user wants to use sgb model,
simply change "pbf" to "sgb".

quit

read parm file paramstd.dat noprint

energy parm cutoff 20.0 listupdate 10 diel 1.0 nodist

quit
minm
conjugate dx0 0.05 dxm 1.0 rest 50

input cntl mxcyc 1 rmscut 5.0e-3 deltae 1.0e-5

run

quit

Just run one step minimization (actually no minimization is needed) to get
the solvation energy for the given structure. If the solvation energy of the
minimized structure is desired, then change "mxcyc 1" to a large number.

end

234 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

C.1.3 Dipeptide/H2O MD Simulation at Constant
Energy

This example illustrates the preparation of a protein/water system composed
of the dipeptide ALA-GLY and a box of 216 SPC-type water molecules. Once
the coordinate structures are built the energy minimization and molecular
dynamics tasks are performed. In this example the system is prepared for a
constant energy Molecular Dynamics simulation.

Input files
dipepce.inp Main input file
spchoh.dat Solvent coordinate file
paramstd.dat Parameter file
spcconst.dat Constraint file

Output files
dipepce.out Main output file
dipepce.rst Coordinate and velocity restart file

write file dipepce.out -

title Dipeptide/H2O MD Simulation at Constant Energy *

Task create is used to build the initial dipeptide/water structure.
create
build primary name dipep type protein ala gly end

build solvent name solvent1 type spc nmol 216 h2o

quit

Task setmodel initializes the energy function for this calculation. The coor-
dinates of a 18.6206 Å cube of solvent in this example are read from the file,
‘spchoh.dat’. Periodic boundary conditions will be applied to nonbonded
interactions between solvent molecules and nonbonded solute-solvent inter-
actions. Nonbonded energy calculations between solvent molecules will use
a molecular cutoff, and all nonbonded interactions will use a cutoff dis-
tance of 8.5 Å. A smoothing function will be used to keep the total energy
constant. SHAKE constraints for molecular dynamics are read from the file
‘spcconst.dat’.

setmodel
setpotential

mmechanics

quit

read parm file paramstd.dat noprint

solute translate

solvent old file spchoh.dat bx 18.6206 by 18.6206 bz 18.6206

energy parm cutoff 8.5 listupdate 10 diel 1.0 nodist

Impact 4.0 Command Reference Manual 235

Appendix C: Example Input Files

energy periodic name solvent1 bx 18.6206 by 18.6206 bz 18.6206

energy molcutoff name solvent1

energy constraint read file spcconst.dat

quit

The system is minimized prior to the Molecular Dynamics simulation. A
0.1 psec simulation will be run, and energy values will be printed out every
10 steps. If needed, average energy statistics for the dynamics could be
obtained using the statistics option.

minm
steepest dx0 0.05 dxm 1.0

input cntl mxcyc 10

run

quit
dynamics
input cntl -

nstep 100 delt 0.001 relax 0.01 -

stop rotations -

initialize temperature at 298.0 seed 100 -

constant totalenergy -

nprnt 10 tol 1.e-7

run

write restart coordinates and velocities box formatted file dipepce.rst

quit
end

C.1.4 Dipeptide/H2O MD Simulation at Constant
Pressure

This example illustrates the preparation of a protein/water system composed
of the dipeptide ALA-GLY and a box of 216 SPC-type water molecules.
Once the species are built the coordinates and velocities are read from a
restart file, and molecular dynamics is performed. In this example the system
is prepared for a constant pressure molecular dynamics simulation. For a
constant pressure simulation, the isothermal compressibility (dvdp), effective
density of solute molecules (dens), type of volume scaling for solute and
solvent (atscale/cmscale), and target pressure are needed.

Input files
dipepcp.inp Main input file
spchoh.dat Solvent coordinate file
paramstd.dat Parameter file
spcconst.dat Constraint file
dipepcp.rst Coordinate and velocity restart file

236 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

Output files
dipepcp.out Main output file
finalcp.rst Coordinate and velocity restart file

write file dipepcp.out -

title Dipeptide/H2O MD Simulation at Constant Pressure *

create
build primary name dipep type protein ala gly end

build solvent name solvent1 type spc nmol 216 h2o

quit
setmodel

setpotential

mmechanics tail

quit

read parm file paramstd.dat noprint

solute translate

solvent old file spchoh.dat bx 18.6206 by 18.6206 bz 18.6206

energy parm cutoff 7.5 listupdate 10 diel 1.0 nodist

energy periodic name solvent1 bx 18.6206 by 18.6206 bz 18.6206

energy molcutoff name solvent1

energy constraint read file spcconst.dat

quit
dynamics
input cntl -

nstep 10 delt 0.001 relax 0.10 taup 0.10 seed 100 stop rotations -

constant temperature constant pressure -

nprnt 1 tol 1.e-7 dvdp 4.96e-5 dens 1.3

input cntl name solvent1 cmscale

input cntl name dipep atscale

input target temperature 298.0 pressure 1.0

read restart coordinates and velocities box formatted file dipepcp.rst

run

write restart coordinates and velocities box formatted file finalcp.rst

quit
end

C.1.5 Monte Carlo Refinement of Protein NP-5

This is an example of a refinement using Monte Carlo. It contains commands
that perform the following functions:
• Build a protein with disulfide crosslinks.
• Read in protein coordinates from a PDB file.
• Set up a molecular mechanics potential with NOE constraints.
• Measures particular bond angles and lengths.
• Performs a Monte Carlo Simulation.
• Prints out the results in a PDB file.

Impact 4.0 Command Reference Manual 237

Appendix C: Example Input Files

Input files
refine.inp Main input file
np5orig.pdb Initial coordinates (PDB format)
mcdist.noe Distance constraint file
paramstd.dat Energy parameter file

Output files
refine.out Main output file
np5refine.pdb Refined coordinates (PDB format)

write file refine.out -

title Monte Carlo Refinement of Protein NP-5*

Task create is used to build the primary structure of the protein.
create
build primary name pardihb type protein -

val phe cyx thr cyx arg gly phe leu cyx -

gly ser gly glu arg ala ser gly ser cyx -

thr ile asn gly val arg hid thr leu cyx cyx arg arg end

Here, the disulfide crosslinks are added between cystine residues.
build crosslink name pardihb -

resnumber 5 atname sg resnumber 20 atname sg -

resnumber 10 atname sg resnumber 30 atname sg -

resnumber 3 atname sg resnumber 31 atname sg

Read in the initial coordinates from the Brookhaven PDB format file,
‘np5orig.pdb’.

read coordinates name pardihb file np5orig.pdb

quit

Task setmodel is used to initialize the energy function.
setmodel
setpotential

mmechanics noforce name pardihb noecon all nobond noangle

The NOE distance constraints are read from the file, ‘mcdist.noe’.
constraint name pardihb noec dist file mcdist.noe con1 12 con2 3

The torsion constraints are specified with a range of plus or minus 20 degrees.
constraint name pardihb noec tors nsec 2 fres 19 lres 22 -

tpsi 135. tphi -140. rang 20. -

fres 25 lres 29 tpsi 135. tphi -140. rang 20.

weight constraint name pardihb noe 100. tors 0.005

quit

The energy parameters are read from file, ‘paramstd.dat’.
read parm file paramstd.dat noprint

energy parm cutoff 8.0 listupdate 10 diel 1.0 distance print 5

quit

Calculate bond angles (angle) and bond lengths (bond).

238 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

analysis
measure name pardihb

calc angl resnumber 22 atomname n resnumber 22 atomname hn -

resnumber 25 atomname o -

angl resnumber 22 atomname hn resnumber 25 atomname o -

resnumber 25 atomname c -

bond resnumber 22 atomname o resnumber 25 atomname hn -

bond resnumber 20 atomname o resnumber 27 atomname hn

quit

quit

Perform a 100 step Monte Carlo simulation. The maximum angle change
is 0.5 degrees and the maximum angle change is adjusted every 25 steps if
needed. Two side chain regions and the entire backbone are varied.

montecarlo name pardihb

param step 100 size 0.5 freq 25

sample schain nseg 2 fres 1 lres 10 fres 17 lres 32

sample bbone nseg 1 fres 1 lres 33 type all

calc

quit

Calculate bond angles and bond lengths upon completion of the Monte Carlo
calculations.

analysis
measure name pardihb

calc angl resnumber 22 atomname n resnumber 22 atomname hn -

resnumber 25 atomname o -

angl resnumber 22 atomname hn resnumber 25 atomname o -

resnumber 25 atomname c -

bond resnumber 22 atomname o resnumber 25 atomname hn -

bond resnumber 20 atomname o resnumber 27 atomname hn

quit

quit

Print out the final coordinates in a new PDB file, ‘np5refine.pdb’.
create
print coordinates name pardihb file np5refine.pdb

quit
end

C.1.6 Building Primary and/or Secondary Protein
Structure

This example illustrates the use of task create to build the primary and
secondary structure of a protein.

Input files
build.inp Main input file
gluthione.dat Glutathione residue data file

Impact 4.0 Command Reference Manual 239

Appendix C: Example Input Files

Output files
build.out Main output file
primary.pdb Coordinate file (PDB format)

write file build.out -

title Building primary and/or secondary protein structure *

Task create is used to build the primary structure of a simple protein with
two chains (the break is specified by ‘***’) with verbose printing of coordi-
nate and connectivity information. The initial coordinates of the dipeptide
are printed in Brookhaven PDB format in the file ‘primary.pdb’.

create
build primary name mol1 type protein gly gly *** ala ala end

print structure name mol1 bond angl tors excl

print ic name mol1 tors

print coordinates name mol1 file primary.pdb

print tree name mol1

quit

Here, the primary structure of a 5-residue peptide is built first, followed by
the subtask build secondary, which assigns the backbone angles of residues
1 through 5 to a helical structure, and the side chain torsion angle χ2 of
residue 2 to 150 degrees.

create
build newresidue gth file gluthione.dat

build primary name mol2 type protein ala leu ala gth ala end

build secondary name mol2 helix fresidue 1 lresidue 5

build secondary side name mol2 resnumber 2 -

chi 2 tor 150.0

print tree name mol2

quit
end

C.1.7 B-DNA Tetramer

This example illustrates the use of task create to build the primary and
secondary structure of a B-DNA tetramer. The analysis subtask hbond is
used to calculate hydrogen bonding distances between strands and generate
an NOE distance constraints. The initial structure is minimized and the
final coordinates are written to the file ‘bdnamin.pdb’ in Brookhaven PDB
format.

Input files
bdna.inp Main input file
paramstd.dat Parameter file

240 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

Output files
bdna.out Main output file
bdna.pdb Coordinate file (PDB format)
bdnamin.pdb Minimized coordinate file (PDB format)

write file bdna.out -

title B-DNA Tetramer *

create
build primary name bdna nopom type DNAB -

hb ade pom thy pom gua pom cyt he *** -

hb gua pom cyt pom ade pom thy he end

build secondary BDNA name bdna

print coor name bdna file bdna.pdb

print tree name bdna

quit
analysis
hbond ucut 5.0 name bdna gener minus 0.5 plus 1.0

quit
setmodel
energy parm cutoff 6.0 diel 80.0 -

distance listupdate 10 print 5 hbcut 4.0

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

quit
minm
input cntl mxcyc 10

steep dx0 0.5 dxm 1.0

run

quit
create
print coordinates name bdna file bdnamin.pdb

quit
end

C.1.8 Simulation from Maestro file

This example shows how to load and perform a simulation of a molecule
stored in a structure file in Maestro format.

Input files
maestro.inp Main input file
ala.mae Maestro structure file

Impact 4.0 Command Reference Manual 241

Appendix C: Example Input Files

Output files
maestro.out Main output file
ala min.pdb PDB structure file after minimization
ala min.mae Maestro structure file after minimization
ala dyn.pdb PDB structure file after MD
ala dyn.mae Maestro structure file after MD

write file maestro.out title Reading and Writing Maestro Files *

The molecule is loaded from the Maestro file ‘ala.mae’ as ‘type auto’. The
force field parameters are assigned automatically using the ‘build types’
command.

create
build primary name ala type auto read maestro file ala.mae

build types name ala

quit

Standard energy parameters are selected. Notice that the ‘read parm’ com-
mand is not necessary if atom types are assigned automatically.

setmodel
setpotential

mmechanics

quit

enrg parm cutoff 99.0 listupdate 1000 diel 1.0 nodist print 1

enrg cons bond

quit

A short energy minimization is performed. The minimized structure is then
saved in PDB and Maestro formats.

minimize
input cntl mxcyc 100 rmscut 0.01 deltae 1.0e-4

steepest dx0 0.05 dxm 1.0

run

write pdb brookhaven name prot file ala_min.pdb

write maestro file ala_min.mae

quit

A short MD simulation is performed, after which the structure is saved in
PDB and Maestro formats.

dynamics
input cntl nstep 100 delt 0.001 relax 0.01 nprnt 1 seed 101 -

constant temperature initialize temperature at 10.0

input target temperature 300.0

input cntl statistics on

run rrespa fast 2

write pdb brookhaven name ala file ala_dyn.pdb

write maestro file ala_dyn.mae

quit
end

242 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

C.2 Advanced Examples

C.2.1 Various Frozen Atom Schemes

This example illustrates how to run a simulation using different frozen atom
schemes. It not only speeds up the simulation by freezing part of the sys-
tem, but also makes the simulation more realistic in some cases. A protein
system, Human Immunodeficiency Virus Type II Protease (HIV) is used for
illustration here.

Input files
frozen.inp Main input file
paramstd.dat Energy parameter file
hiv.pdb PDB coordinate file

Output files
frozen.out Main output file

write verbose 3 file frozen.out title Frozen atom schemes *

create

build primary name hiv type protein read file hiv.pdb

read coordinates name hiv brookhaven file hiv.pdb

build types name hiv

quit

setmodel

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

solute translate rotate diagonal

enrg parm cutoff 20.0 -

listupdate 100 diel 1.0 nodist print 1

enrg cons bond

zonecons freeze name hiv allheavy

Freeze all heavy atoms in HIV complex.
zonecons chain name hiv chainname A free chainname B fixed

Make chain A in HIV to be free, and chain B to be frozen.
zonecons sphere name hiv resn 20 atomname CA relax rad 10.0 buffrad 12.0

Relax a sphere, with the center located at residue 20 atom alpha-carbon and
a radius 10A. The buffer radius is 12A, which means the atoms located in
the shell between radius 10A and radius 12A is belong to the buffer region.

zonecons residue name hiv resn 10 backbone fixed resn 11 sidechain free

Make residue 10’s backbone atoms fixed, and residue 11’s sidechain atoms
free.

Impact 4.0 Command Reference Manual 243

Appendix C: Example Input Files

zonecons resseq name hiv resn 20 to 40 buffer resn 40 to 100 fixed

Put residues from 20 to 40 in the buffer region, and residues from 40 to 100
in frozen region.

zonecons atom name hiv atmn 45 free atmn 50 fixed atmn 52 buffer

Make atom 45 free, atom 50 fixed, and atom 52 in buffer.
quit

minimize

input cntl mxcyc 100 rmscut 0.01 deltae 1.0e-3

steepest dx0 0.05 dxm 1.0

run

write pdb brookhaven name hiv file hiv_min.pdb

quit

end

C.2.2 Binding Energy

This example illustrates how to calculate binding energy for protein/ligand
docked complex. Streptavidin/Biotin complex is used for illustration. Three
separate minimizations must be run to get the binding energy: protein with
ligand, protein alone, ligand alone. The binding energy can be calculated by
E(bind) = E(prot+lig) - E(prot) - E(lig).

Input files
prot-lig.inp Main input file
paramstd.dat Energy parameter file
prot.pdb Coordinate file
lig.pdb Coordinate file

Output files
prot-lig.out Main output file

Input file for the protein alone (streptavidin, 1stp).
write file prot.out -

title BInding Energy of protein/ligand complex *

creat
build primary name 1stp type protein read file prot.pdb

! build primary name drug type ligand read file lig.pdb

read coordinates name 1stp brookhaven file prot.pdb

! read coordinates name drug brookhaven file lig.pdb

build types name 1stp

quit
setmodel

setpotential

244 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

mmechanics

quit

read parm file paramstd.dat noprint

solute translate rotate diagonal

enrg parm cutoff 12.0 -

listupdate 100 diel 1.0 nodist print 10

enrg cons bond

quit
minimize

input cntl mxcyc 5000 rmscut 0.01 deltae 1.0e-3

steepest dx0 0.05 dxm 1.0

! read restart coordinates formatted box file prot.min

run

write restart coordinates formatted box file prot.min

quit
end

Input file for the ligand alone (biotin). It should be pointed out that the
ligand molecule must have all H atoms added (use other programs, such as
ChemEdit or MacroModel, to add them). Since there is there is no template
file in priori for drug molecules, the program needs to build a template
file from the PDB file, which thus requires H atoms to be present in the
ligand PDB file. However, proteins do not require all H atoms in hte PDB
files (which means you can use PDB files from Brookhaven database), since
there are templates for all residues and program will automatically match
missing H atoms.

write file lig.out -

title BInding Energy of protein/ligand complex *

creat
! build primary name 1stp type protein read file prot.pdb

build primary name drug type ligand read file lig.pdb

! read coordinates name 1stp brookhaven file prot.pdb

read coordinates name drug brookhaven file lig.pdb

build types name drug

quit
setmodel

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

solute translate rotate diagonal

enrg parm cutoff 12.0 -

listupdate 100 diel 1.0 nodist print 10

enrg cons bond

quit
minimize

input cntl mxcyc 5000 rmscut 0.01 deltae 1.0e-3

steepest dx0 0.05 dxm 1.0

! read restart coordinates formatted box file lig.min

run

Impact 4.0 Command Reference Manual 245

Appendix C: Example Input Files

write restart coordinates formatted box file lig.min

quit
end

Input file for the protein ligand complex (streptavidin + biotin).

write file prot-lig.out -

title BInding Energy of protein/ligand complex *

creat
build primary name 1stp type protein read file prot.pdb

build primary name drug type ligand read file lig.pdb

read coordinates name 1stp brookhaven file prot.pdb

read coordinates name drug brookhaven file lig.pdb

build types name 1stp

build types name drug

quit
setmodel

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

solute translate rotate diagonal

enrg parm cutoff 12.0 -

listupdate 100 diel 1.0 nodist print 10

enrg cons bond

quit
minimize

input cntl mxcyc 5000 rmscut 0.01 deltae 1.0e-3

steepest dx0 0.05 dxm 1.0

! read restart coordinates formatted box file prot-lig.min

run

write restart coordinates formatted box file prot-lig.min

quit
end

The above examples show how to calculate binding energies in gas phase. If
user wants to calculate the binding energy in solvent, he can specify contin-
uum solvation models SGB or PBF in calculation by the following modifi-
cation in SETMODEL.

setmodel
setpotential

! mmechanics

mmechanics consolv [pbf | sgb]

quit

read parm file paramstd.dat noprint

solute translate rotate diagonal

enrg parm cutoff 12.0 -

listupdate 100 diel 1.0 nodist print 10

enrg cons bond

quit

246 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

C.2.3 Protein/Water Part I. Calculating the Protein
Size

This set of examples illustrates the steps required to build a protein/water
system for a molecular dynamics simulation starting with only a set of pro-
tein coordinates. The first step in the process is the calculation of the size
of the example protein, pancreatic trypsin inhibitor, so that the dimensions
of the solvent system can be determined.

Input files
ptisize.inp Main input file
argbnewr.dat Residue topology file
alaenewr.dat Residue topology file
pti4.pdb Coordinate file (PDB format)
paramstd.dat Parameter file

Output files
ptisize.out Main output file

write file ptisize.out -

title Calculating the Size of Pancreatic Trypsin Inhibitor *

create
build newresidue argb file argbnewr.dat -

alae file alaenewr.dat

build primary name pti type protein -

read file pti4.pdb crosslink -

substitute arg to argb rnumber 1 -

substitute ala to alae rnumber 58

read coordinates brookhaven name pti file pti4.pdb

build crosslink automatic

quit

The solute subtask of setmodel is used to translate and rotate the protein
to the origin and to align the longest axis with the z axis. The maximum
dimensions of the protein will be found in the output file. When 16 Å are
added to these dimensions then there will be room for approximately 3 layers
of water molecules around the protein. Task setmodel will also report the
net charge of the protein. This number will be used to determine the number
of counterions necessary for the simulation system. After this input file is
run two intermediate files should be run.
The first (‘fullboxmin.inp’) will generate a box of water with the full di-
mensions, which are determined by the output of (‘ptisize.out’), of the
final box of water and will then minimize this box for 100 steps. The second
job (‘fullboxdyn.inp’) performs a molecular dynamics run for 1 psec to

Impact 4.0 Command Reference Manual 247

Appendix C: Example Input Files

equilibrate this system of approximately 3000 water molecules, calculated in
first run (‘fullboxmin.inp’). The final input file is ‘placepti.inp’. This
run will surround the protein and ions in a box of water molecules using the
protein dimensions previously determined.

setmodel
setpotential

mmechanics

quit

read parm file paramstd.dat noprint

solute translate rotate

energy parm cutoff 8.0 listupdate 5 dielectric 1.0 nodistance

quit
end

The following input file, ‘fullboxmin.inp’, performs the minimize task on
the solvent system. In this run we have started from a template solvent
system composed of 216 water molecules in an 18.6206 Å cube. This system
is enlarged according to the protein size found in the previous calculation.
In this case the enlarged solvent system of 3148 water molecules occupying a
40.7×42.1×54.9 Å region is minimized and a restart file (‘fullboxmin.rst’)
is written for subsequent equilibration. The output listing file for this step
has been omitted.

!! MAINOUTPUT fullboxmin.out fullboxmin.out Main output file

!! MAININPUT fullboxmin.inp fullboxmin.inp Main input file

!! INPUT spccon.dat spccon.dat Constraint file

!! INPUT hoh216.xyz hoh216.xyz Solvent coordinate file

!! INPUT paramstd.dat paramstd.dat Parameter file

!! OUTPUT fullboxmin.rst fullboxmin.rst Coordinates of Minimized full box

!! DESCRIPTION FILE fullboxmin.des

!! TITLE Minimization of Full-size Box of Water Molecules for pti/water system

SET FFIELD AMBER86

WRITE file fullboxmin.out -

title Minimization of Full-size Box of Water Molecules -

for PTI/Water System *

CREATE

build solvent name solvent1 type spc nmol 3148 h2o

QUIT

SETMODEL

setpotential

mmechanics

quit

energy parm cutoff 7.5 diel 1.0 nodistance listupdate 10

energy molcutoff name solvent1

energy constraint read file spccon.dat

read parm file paramstd.dat noprint

! New system size (maximum pti dimensions + 16)

248 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

solvent old file hoh216.xyz bx 40.7 by 42.1 bz 54.9

energy periodic name solvent1 bx 40.7 by 42.1 bz 54.9

QUIT

MINM

input cntl mxcyc 100

conjugate dx0 0.01 dxm 1.0

run

write restart coordinates formatted real8 file fullboxmin.rst

QUIT

END

Input file ‘fullboxdyn.inp’ is used to perform 1 ps of molecular dynamics
on the solvent system from the previous minimization run saving a restart
file for the next step. The output listing file for this step has been omitted.

!! MAINOUTPUT fullbox.out fullbox.out Main output file

!! MAININPUT fullbox.inp fullbox.inp Main input file

!! INPUT spccon.dat spccon.dat Constraint file

!! INPUT paramstd.dat paramstd.dat Parameter file

!! INPUT fullboxmin.rst fullboxmin.rst Coordinates of minimized full box

!! OUTPUT fullboxdyn.rst fullboxdyn.rst Coordinate restart file at 298K

!! DESCRIPTION FILE fullbox.des

!! TITLE MD Simulation on full-size box of Water Molecules for pti/water *

SET FFIELD AMBER86

WRITE file fullboxdyn.out -

title MD Simulation on full-size box of Water Molecules for pti/water *

CREATE

build solvent name solvent1 type spc h2o nmol 3148

QUIT

SETMODEL

setpotential

mmechanics

quit

energy parm cutoff 7.5 diel 1.0 nodist listupdate 10

energy periodic name solvent1 bx 40.7 by 42.1 bz 54.9

energy molcutoff name solvent1

energy constraints read file spccon.dat

read parm file paramstd.dat noprint

QUIT

put 1.0 into ’ttime’

put 0.0020 into ’timestep’

put ’ttime’ / ’timestep’ into ’nstep’

Impact 4.0 Command Reference Manual 249

Appendix C: Example Input Files

put 10.0 * ’timestep’ into ’relax’

DYNAMICS

input cntl -

nstep ’nstep’ delt ’timestep’ relax ’relax’ seed 100 -

initialize temperature at 298.0 constant temperature -

nprnt 10 tol 1.e-7

input target temperature 298.0

read restart coordinates formatted real8 file fullboxmin.rst

run

write restart coordinates formatted real8 file fullboxdyn.rst

QUIT

END

C.2.4 Protein/Water Part II. Placing a Protein into
Water

This illustrates the final step of placing pancreatic trypsin inhibitor protein
in water.

Input files
placepti.inp Main input file
argbnewr.dat Residue topology file
alaenewr.dat Residue topology file
pti4.pdb Coordinate file (PDB format)
paramstd.dat Parameter file
pticonstr.dat Constraint file
spc3148.xyz Coordinates of waters
header.3148 Header line for Coordinate file

Output files
placepti.out Main output file
placepti.rst Coordinate Restart file

write file placepti.out -

title Placing Pancreatic Trypsin Inhibitor into water *

create

250 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

Two new residues are specified for the first and last residues. These are
specially capped to make them the appropriate zwitterionic forms. In this
case an arginine (NH+

3) and alanine (COO−) are used.
build newresidue argb file argbnewr.dat -

alae file alaenewr.dat

The sequence is taken from the protein data bank file, ‘pti4.pdb’. The first
and last residues are substituted with the zwitterionic forms and the list of
crosslinks are found automatically from the protein data bank file.

build primary name pti type protein -

read file pti4.pdb crosslink -

substitute arg to argb rnumber 1 -

substitute ala to alae rnumber 58

The cartesian coordinates are read in from the protein data bank file and
the bonds, angles and dihedrals due to crosslinks are built on the next line.

read coordinates brookhaven name pti file pti4.pdb

build crosslink automatic

A bath of 3148 SPC water molecules is made. This number is chosen to be
larger than the final number of water molecules that will be present after the
“full box” solvent has been replicated and extra water molecules removed
(there is a bug in IMPACT that produces a division by zero if this number
is smaller). The next line adds 6 chloride ions onto the end of the protein.
These ions are not connected to the protein by bonds.

build solvent name solvent1 type spc nmol 3148 h2o

build primary ions name pti clm 6 end

quit
setmodel

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

The solute (PTI) is translated to the origin and rotated so that the maxi-
mum dimension is along the z axis. The skip value means that the last 6
residues of PTI are skipped in this calculation of translation and rotation.
The mixture option uses a density of 1.1 for the protein to calculate the
number of water molecules to be removed. Solvent old will take its input
box of 3148 water molecules (‘spc3148.xyz’) and surround the protein with
water to fill the final box dimension of 40.7 × 42.1 × 54.9 Å. The full box
has dimensions large enough to surround the protein, and was generated
using the input file ‘fullboxdyn.inp’. The coordinate file ‘spc3148.xyz’
was obtained by removing the header from ‘fullboxdyn.rst’ (produced by
‘fullboxdyn.inp’) and appending the result to the file ‘header.3148’. The
ions are placed in sites at which the protein produces the most favorable
electrostatic potential (most positive, for negative chloride ions). Only wa-
ter sites are tested in the potential calculations: the ions are placed one at
a time in place of the water molecule that is determined to have the highest
electrostatic potential. As each ion is placed it contributes to the electro-
static potential calculation for the next ion. The first energy line sets up a

Impact 4.0 Command Reference Manual 251

Appendix C: Example Input Files

box with periodic boundary conditions and dimensions given by the parame-
ters bx, by and bz in Å. The next lines specify a molecule-based cutoff for the
water solvent and a residue-based cutoff for the protein. The fourth energy
line sets the cutoff and list updating frequency, and a dielectric function of
1.0 (constant) for the electrostatic energies.

solute translate rotate skip 6 name pti

mixture density 1.10

solvent old file spc3148.xyz bx 40.7 by 42.1 bz 54.9 -

place charge negative 6 electrostatic cutoff 9.0 name pti

energy periodic name solvent1 bx 40.7 by 42.1 bz 54.9

energy rescutoff byatom name pti

energy molcutoff bycm name solvent1

energy parm cutoff 8.0 listupdate 5 diel 1.0 nodistance print 10

The next two lines specify SHAKE and RATTLE constraints. The first line
specifies that all bonds will be constrained and that all bonds and angles
involving lone pairs (on the sulfurs in this case) are constrained as well. The
next line reads in a file containing an additional constraint for the water
molecules (the H-H distance).

energy constraint bond lonepair

energy constraint read file pticonstr.dat

quit

A minimization is performed for 200 steps and then the dynamics is started.
minimize
input cntl mxcyc 200

conjugate dx0 0.01 dxm 1.0

run

write restart coordinates formatted real8 file placepti.rst

quit

The input cntl line specifies that 10 steps of molecular dynamics will be
performed using a time step of 1 fsec (0.001 psec), a relaxation time of 10
fsec for the temperature scaling. The target temperatures are specified on
the next line. The run command actually begins the simulation.
For real runs the dynamics will need at least 10 psec of equilibration. It
should be noted that here 298K is used as the target temperature only for
the purpose of illustration. In fact, a temperature jump from 0K to 298K is
believed to be too abrupt and probably causes large perturbations to the sys-
tem. We have performed test runs with a different heating schedule: increase
the temperature from 1K to 298K in steps of about 100K, equilibrating the
system for 2 psec at each temperature. The final structure was compared
to that of the same total amount of equilibration (8 psec) at 298K, with no
simulation at intermediate temperatures. Even with such short simulations,
the structure produced by the "abrupt jump" showed more visible devia-
tion from the starting crystal structure (‘pti4.pdb’), in some regions of the
protein, than did the "gradual increase" structure.
The output listing for this simulation is very lengthy and is not included
here.

252 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

dynamics
input cntl -

nstep 10 delta 0.00100 relax 0.0100 nprnt 1 -

constant temperature byspecies seed 100 stop rotations -

initialize temperature at 298.0

input target temperature 298.0 name pti -

temperature 298.0 name solvent1

run

quit
end

C.2.5 PTI in water (9.0 Angstrom)

This illustrates a short molecular dynamics simulation of the pancreatic
trypsin inhibitor protein in water. This example uses a 9 Å cutoff for non-
bonded interactions.

Input files
pti9c.inp Main input file
pti9c.inp Main input file
argbnewr.dat Residue topology file
alaenewr.dat Residue topology file
pti4.pdb Coordinate file (PDB format)
paramstd.dat Parameter file
pticonstr.dat Constraint file
pti1ps.rst Coordinates and velocities restrart file

Output files
Main output file

pti9c.out Main output file

write file pti9c.out -

title Pancreatic Trypsin Inhibitor/water Simulation -

(9.0 Angstrom cutoff) *

create

Two new residues are specified for the first and last residues. These are
specially capped to make them the appropriate zwitterionic forms. In this
case an arginine (NH+

3) and alanine (COO−) are used.
build newresidue argb file argbnewr.dat -

alae file alaenewr.dat

The sequence is taken from the Protein Data Bank file, ‘pti4.pdb’. The
first and last residues are substituted with the zwitterionic forms and the
list of crosslinks is found automatically from the protein data bank file.

Impact 4.0 Command Reference Manual 253

Appendix C: Example Input Files

build primary name pti type protein -

read file pti4.pdb crosslink -

substitute arg to argb rnumber 1 -

substitute ala to alae rnumber 58

The next two lines read in the cartesian coordinates from the protein data
bank file, and build the bonds, angles and dihedrals due to crosslinks.

read coordinates brookhaven name pti file pti4.pdb

build crosslink automatic

The next lines create a bath of 2943 SPC water molecules, and add six
chloride ions to the solution. These ions are not connected to the protein by
bonds.

build solvent name solvent1 type spc nmol 2943 h2o

build primary ions name pti clm 6 end

quit
setmodel

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

The first energy line sets up a box with periodic boundary conditions and
dimensions given by the parameters bx, by and bz in Å. The next lines
specify a molecule-based cutoff for the water solvent and a residue-based
cutoff for the protein. The fourth energy line sets the cutoff and list updating
frequency for the main non-bonded neighbor list and for the outer neighbor
list, and a dielectric function of 1.0 (constant) for the electrostatic energies.

energy periodic name solvent1 bx 43.2 by 46.9 bz 47.3

energy molcutoff bycm name solvent1

energy rescutoff byatom name pti

energy parm cutoff 9.0 listupdate 5 diel 1.0 nodistance -

outcutoff 18.0 outlistupdate 50

The next two lines specify SHAKE and RATTLE constraints. The first line
specifies that all bonds will be constrained and that all bonds and angles
involving lone pairs (on the sulfurs in this case) are constrained as well. The
next line reads in a file containing an additional constraint for the water
molecules (the H-H distance).

energy constraint bond lonepair

energy constraint read file pticonstr.dat

quit
dynamics

The input cntl line specifies 10 steps of molecular dynamics using a time
step of 1 fsec (0.001 psec) and a relaxation time of 10 fsec for the temperature
scaling. The next line specifies target temperatures for each species, and
the following line reads in the initial coordinates and velocities. The run
command actually begins the simulation.

input cntl -

nstep 10 delta 0.00100 relax 0.0100 nprnt 2 -

constant temperature byspecies -

seed 100

254 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

input targ temp 298.0 name pti temp 298.0 name solvent1

read restart coordinates and velocities formatted -

file pti1ps.rst nobox

run

quit
end

C.2.6 MD Simulation with the Ewald method

This example illustrates how to run a simulation using the Ewald summation
method for the calculation of the electrostatic interactions in a fully periodic
system. A simple (and small) system of about 216 water molecules is used,
and a one picosecond simulation is run.

Input files
ewald.inp Main input file
paramstd Energy parameter file
tip4p.con Energy constraints
tip4p.eq Coordinate and velocity restart file

Output files
ewald.out Main output file

write file ewald.out -

title TIP4P Water MD *

We first create a system of 216 TIP4P water molecules.
create

build solvent name solvent1 type tip4p nmol 216 h2o

quit
setmodel

setpotential

To instruct IMPACT to use the Ewald summation method two things are
needed: (a) all species must have periodic boundary conditions; and (b) the
keyword ewald must follow mmechanics.

mmechanics ewald

quit

read parm file paramstd noprint

enrg parm cutoff 9.5 listupdate 10 diel 1.0 nodist

enrg periodic name solvent1 bx 18.6353 by 18.6353 bz 18.6353

TIP4P must be constrained, so we read the constraint file ‘tip4p.con’. Note
also that a molecular cutoff is selected for the solvent; however, when using
the FMM this is completely ignored.

Impact 4.0 Command Reference Manual 255

Appendix C: Example Input Files

enrg cons read file tip4p.con

enrg molcut name solvent1

quit
dynamics

We use this example also as a test of energy conservation, so let’s run a one
picosecond simulation at constant energy.

input cntl -

nstep 1000 delt 0.001 relax 0.05 taup 0.10 seed 100 stop rotations -

constant totalenergy nprnt 50 tol 1.e-7

read restart coordinates and velocities box real8 -

external file tip4p.eq

We will see later that the Fast Multipole Method works nicely together with
the r-RESPA integrators. The Ewald summation, however, does not, at least
for the moment, so we must use the default (Verlet) integrator and a short
time step.

run

quit
end

C.2.7 Minimization Using Varying Energy Function
Weights

In this example, a conotoxin structure that was folded in a previous Monte
Carlo simulation is minimized with varying weights applied to the van der
Waals and NOE constraint terms of the energy function.

Input files
conotoxin.inp Main input file
paramstd.dat Parameter file
conotoxin.dat Coordinate file (IMPACT format)
conotoxin.noe NOE constraint file

Output files
conotoxin.out Main output file
conotoxrst1 Coordinate restart file
conotoxrst2 Coordinate restart file
conotoxrst3 Coordinate restart file
conotoxrst4 Coordinate restart file
conotoxpdb1 Coordinate file (PDB format)
conotoxpdb2 Coordinate file (PDB format)
conotoxpdb3 Coordinate file (PDB format)
conotoxpdb4 Coordinate file (PDB format)

256 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

write file conotoxin.out -

title Minimization using varying energy function weights *

Build the initial structure of the conotoxin from the coordinates in the file
‘conotoxin.dat’. Crosslink the sulfurs in the cystine residues.

create
build primary name conotoxin type protein -

glu cyx cyx asn pro ala cyx gly arg hid tyr ser cyx end

read coordinates name conotoxin file conotoxin.dat

build crosslinks name conotoxin -

resnumber 2 atname sg resnumber 7 atname sg -

resnumber 3 atname sg resnumber 13 atname sg

quit

Initialize one-dimensional tables to be used as counters and weighting coef-
ficients. The integer table ’counter’ is used as the control variable for the
while loop.

put 0.0001 into ’wtvdw’

put 1.0 into ’wtnoe’

put 1 into ’counter’

put 50 into ’increment’

put ’increment’ into ’stepcount’

while ’counter’ le 4

The one-dimensional character tables ’rstfile’ and ’pdbfile’ are initial-
ized with the concatenation of constant strings and the character representa-
tion of the loop control variable, ’counter’. The integer table ’increment’
holds the number of minimization cycles to be performed with each set of
constraint weights.

put $conotoxrst$ concat (char ’counter’) into ’rstfile’

put $conotoxpdb$ concat (char ’counter’) into ’pdbfile’

The energy function for this iteration is initialized using setmodel. On
each iteration, the weighting coefficients for the NOE and van der Waals
constraint terms in the energy function are assigned the current values of
’wtnoe’ and ’wtvdw’, respectively. The NOE distance constraints are read
from the file ‘conotoxin.noe’.

setmodel
read parm file paramstd.dat noprint

energy parm cutoff 10.0 diel 1.0 distance listupdate 10 print 50

setpotential

mmechanics force noecon name conotoxin all no14 noel nohb

constraint name conotoxin noec dist file conotoxin.noe con1 40 con2 2

weight constraint name conotoxin noe ’wtnoe’

weight intermolecular vdw ’wtvdw’

quit

quit

The system is minimized using the conjugate gradient minimizer. The value
of the table, ’increment’ is used specify the number of cycles of mini-
mization to be performed. The values of the initial and maximum step

Impact 4.0 Command Reference Manual 257

Appendix C: Example Input Files

sizes as well as the convergence criteria are typical. Coordinate restart and
Brookhaven PDB format files are written after minimization.

minm
conjugate dx0 0.5 dxm 1.0

input cntl mxcyc ’increment’ rmscut 0.1 deltae 0.0001

run

write restart coordinates formatted file ’rstfile’

write pdb coordinates file ’pdbfile’ name conotoxin

quit

The Lennard-Jones 6-12 component of the system energy is appended to the
table ’energylj612’, and the number minimization cycles is appended to
the table ’mincycles’.

put ’energylj612’ append ’current.lj612’ into ’energylj612’

put ’mincycles’ append ’stepcount’ into ’mincycles’

The values are weighting coefficients are scaled, the loop control variable is
incremented, and the minimization step count is updated.

put ’wtvdw’ * 10.0 into ’wtvdw’

put ’wtnoe’ * 2.0 into ’wtnoe’

put ’stepcount’ + ’increment’ into ’stepcount’

put ’counter’ + 1 into ’counter’

reset ’current.lj612’

endwhile

The result tables ’mincycles’ and ’energylj612’ are printed in the output
file.

table
printoptions -

title Minimization cycles versus 6-12 energy *

print ’mincycles’ ’energylj612’

quit
end

C.2.8 Calculation of Some Energetic Quantities of a
Helical Protein

This example illustrates a variety of the capabilities of the analysis task
for calculating selected energetic quantities.

Input files
analener.inp Main input file
paramstd.dat Standard energy parameter file

Output files
analener.out Main output file

write file analener.out -

258 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

title Calculation of Some Energetic Quantities of a Helical Protein *

Use task create to build the example helical protein structure.
create
build primary name mol1 type protein ala ala cys ala end

build secondary name mol1 helix fres 1 lres 4

quit

Subtask setmodel sets up the energy function before any analysis subtasks
that calculate energetic quantities are performed.

setmodel
setpotential

mmechanics

quit

read parm file paramstd.dat noprint

energy parm cutoff 8.0 diel 1.0 dist

quit

Subtask energy calculates all terms in the current energy function.
analysis
energy allterms

quit

Calculate the hydrogen bonding energy with a distance cutoff of 8 Å and an
angular cutoff of 90 degrees.

analysis
energy analyze hbond hbond hbcut 8.0 hbangcut 90.0

quit

Calculate the energy components between all residues of species mol1.
analysis
energy res-res one name mol1 allterms

quit
end

C.2.9 Calculation of Some Structural Features of a
Helical Protein

This example illustrates a variety of the capabilities of the analysis task
for calculating geometrical features of proteins.

Input files
analgeo.inp Main input file

Output files
analgeo.out Main output file
noeconstr.out Simulated NOE constraints

write file analgeo.out -

Impact 4.0 Command Reference Manual 259

Appendix C: Example Input Files

title Calculation of Some Structural Features of a Helical Protein *

Use task create to build the example helical protein structure.
create
build primary name mol1 type protein ala ala cys ala end

build secondary name mol1 helix fresidue 1 lresidue 4

quit
analysis

Subtask measure is used to calculate selected bond distances, bond angles,
and torsion angles.

measure name mol1

calc bond resnumber 1 atomname ca resnumber 2 atomname ca -

angl resnumber 1 atomname c resnumber 1 atomname o -

resnumber 3 atomname hn -

tors resnumber 1 atomname ca resnumber 1 atomname c -

resnumber 2 atomname n resnumber 2 atomname ca

quit

Here, subtask measure is used to calculate geometrical features of the side
chain on residue three.

measure name mol1

calc side resnumber 3

quit

Subtask NOE is used to generate all interresidue distances between hydrogen
atoms in the 1.5 to 4.5 Å range. A constraint file, ‘noeconstr.out’, is also
generated using distance tolerances of 0.5 Å.

noe name mol1 ucut 4.5 lcut 1.5 gen file noeconstr.out prokiral -

plus 0.5 minus 0.5

Subtask hbond calculates the distances between H-bonding donor and ac-
ceptor atoms in the distance range of 1.5 to 4.0 Å.

hbond name mol1 ucut 4.0 lcut 1.5

Subtask surface calculates the solvent accesible surface area of the protein
using the default resolution of 0.25 Å.

surface name mol1

quit
end

260 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

C.3 Analysis Examples

C.3.1 Structural Comparison using RMS deviations

The example illustrates the use of the analysis subtask RMS to compare two
structural units in terms of their RMS deviation.

Input files
rms.inp Main input file
rmsdata1.pdb Coordinate data file (PDB format)
rmsdata2.pdb Coordinate data file (PDB format)
rmsdata3.pdb Coordinate data file (PDB format)

Output files
rms.out Main output file

write file rms.out title RMS Structural Comparison *

Build the primary structure of the protein for this example.
create
build primary name mol1 type prot ile pro gly ala thr end

quit

Calculate the RMS deviation between corresponding atoms of the internal
structure mol1 generated by task create and the coordinates stored in the
Brookhaven PDB format file, ‘rmsdata1.pdb’.

analysis
rms name mol1 -

name mol1dat pdb2 file rmsdata1.pdb comp same

quit

Calculate the RMS deviation between the coordinates of corresponding
atoms contained in the files rmsdata2.pdb and rmsdata3.pdb.

analysis
rms name data1 pdb1 file rmsdata2.pdb -

name data2 pdb2 file rmsdata3.pdb comp all

quit
end

C.3.2 Building a Two-Dimensional Torsion Map

This example illustrates the construction of two dimensional energy contour
maps resulting from the rotation of the phi and psi angles in the alanine
dipeptide.

Impact 4.0 Command Reference Manual 261

Appendix C: Example Input Files

Input files
torsionmap.inp Main input file
paramstd.dat Parameter file

Output files
torsionmap.out Main output file
tordata.meta Torsion map plot file(Meta format)
potential.ps Potential Energy Map
torsional.ps Torsional Energy Map
lj.ps Lennard-Jones Energy Map
electrost.ps Electrostatic Energy Map
hbond.ps Hydrogen Bonding Energy Map

write file torsionmap.out -

title Building a Two Dimensional Torsion Map *

Build the primary structure of the alanine dipeptide:
create
build newres nma file nma

build primary name dip type prot -

ace ala nma end

quit

Set up the energy functions:
setmodel
setpotential

mmechanics

quit

read parm file paramstd.dat noprint

enrg parm cutoff 7.5 diel 1.0 dist

quit

Select torsion angles phi and psi to be varied, and select the range of variation
from -180 to 180 degrees in increments of 10 degrees. Save the energy com-
ponents calculated at each point in the variation in the file ’tordata.meta’
for subsequent plotting. Data in ’tordata.meta’ is formatted in five sections
corresponding to five energy components, with each section being composed
of blocks of energy values for the angles varied in the order: tor1=’init’
through ’final’, tor2=’init’; tor1=’init’ through ’final’, tor2=’init+incr’;...
tor1=’init’ through ’final’, tor2=’final’.
To obtain meaningful plots it is best to generate the data first, examine the
energy values in ’tordata.meta’ to determine what contour values should
be plotted, and then use a plotting routine to produce the contour plots.

analysis
tormap 2d name dip -

tor1 res 2 main 1 init -180.0 final 180.0 incr 10* -

tor2 res 2 main 2 init -180.0 final 180.0 incr 10* -

plot delay file tordata.meta

262 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

quit

The following sections demonstrate the use of IMPACT to produce contour
plots in postscript format. Each plot is written to a separate postscript file.
Alternately, the ASCII data file ’tordata.meta’ could be used as input to
external plotting programs.
Plot the total potential energy contour map in postscript mode.

plot
read 2d file tordata.meta number 1

plot file potential.ps -

title Potential Energy Map for Ala Dip * -

xlabel Phi * ylabel Psi * postscript -

xmin -180.0 xmax 180.0 ymin -180.0 ymax 180.0 -

contour 30 at -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -

-11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -

-21 -22 -23 -24 -25 -26 -27 -28 -29 -30

quit

Plot the torsional energy contour map in postscript mode.
plot
read 2d file tordata.meta number 2

plot file torsional.ps -

title Torsional Energy Map for Ala Dip * -

xlabel Phi * ylabel Psi * postscript -

xmin -180.0 xmax 180.0 ymin -180.0 ymax 180.0 -

contour 7 at 14.0 15.0 16.0 17.0 18.0 19.0 20.0

quit

Plot the Lennard-Jones energy contour map in postscript mode.
plot
read 2d file tordata.meta number 3

plot file lj.ps -

title Lennard-Jones Energy Map for Ala Dip * -

xlabel Phi * ylabel Psi * postscript -

xmin -180.0 xmax 180.0 ymin -180.0 ymax 180.0 -

contour 12 at 2 4 6 8 10 12 14 16 18 20 -

-1 -2

quit

Plot the electrostatic energy contour map in postscript mode.
plot
read 2d file tordata.meta number 4

plot file electrost.ps -

title Electrostatic Energy Map for Ala Dip * -

xlabel Phi * ylabel Psi * postscript -

xmin -180.0 xmax 180.0 ymin -180.0 ymax 180.0 -

contour 16 at -15 -16 -17 -18 -19 -20 -21 -22 -23 -

-24 -25 -26 -27 -28 -29 -30

quit

Plot the hydrogen bonding energy contour map in postscript mode.
plot
read 2d file tordata.meta number 5

Impact 4.0 Command Reference Manual 263

Appendix C: Example Input Files

plot file hbond.ps -

title Hydrogen Bonding Energy Map for Ala Dip * -

xlabel Phi * ylabel Psi * postscript -

xmin -180.0 xmax 180.0 ymin -180.0 ymax 180.0 -

contour 18 at -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -

-0.8 -0.9 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -

-0.07 -0.08 -0.09

quit
end

The postscript figures from graphics files ‘potential.ps’, ‘torsional.ps’,
‘lj.ps’, ‘electrost.ps’, and ‘hbond.ps’ follow:

00.081-

000.09-

00000.0

0000.09

-180. 00 -90. 000 0. 00000 90. 0000 180. 000

I
S
P

PH I

POT ENT I A L ENERGY M A P FOR A L A DI P

α = − 00000.1
β = − 00000.2
χ = − 00000.3
δ = − 00000.4
ε = − 00000.5
φ = − 00000.6
γ = − 00000.7
η = − 00000.8
ι = − 00000.9
ϕ = − 0000.01
κ = − 0000.11
λ = − 0000.21
µ = − 0000.31
ν = − 0000.41
ο = − 0000.51
π = − 0000.61
θ = − 0000.71
ρ = − 0000.81
σ = − 0000.91
τ = − 0000.02
υ = − 0000.12
ϖ = − 0000.22
ω = − 0000.32
ξ = − 0000.42
ψ = − 0000.52
ζ = − 0000.62
{ = − 0000.72
| = − 0000.82
} = − 0000.92
∼ = − 0000.03

α

α

α
α

α

α

α

α

χ

χ

χ
χ

χ

δ

δ

δ

ε

ε

ε

ε

φ

φφ

φ

φ

γ

η

η

ι

ι

ι
ϕ

ϕ

κ
λ

264 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

00.081-

000.09-

00000.0

0000.09

-180. 00 -90. 000 0. 00000 90. 0000 180. 000

I
S
P

PH I

T ORSI ONA L ENERGY M A P FOR A L A DI P

G = 00000.41
F = 00000.51
E = 00000.61
D = 00000.71
C = 00000.81
B = 00000.91
A = 00000.02

F

F

F

F

E E

E

E

E

E

D

D

C C

B

B

B

A

A

00.081-

000.09-

00000.0

0000.09

-180. 00 -90. 000 0. 00000 90. 0000 180. 000

I
S
P

PH I

L ENNA RD-JONES ENERGY M A P FOR A L A DI P

J = 000000.2
I = 000000.4
H = 000000.6
G = 000000.8
F = 00000.01
E = 00000.21
D = 00000.41
C = 00000.61
B = 00000.81
A = 00000.02
α = − 00000.1
β = − 00000.2

J J

J

JJ

J

J

J

I

I
I

I

I

I
I

I
H

E

B

A

A

α

α

Impact 4.0 Command Reference Manual 265

Appendix C: Example Input Files

00.081-

000.09-

00000.0

0000.09

-180. 00 -90. 000 0. 00000 90. 0000 180. 000

I
S
P

PH I

EL ECT ROST A T I C ENERGY M A P FOR A L A DI P

α = − 0000.51
β = − 0000.61
χ = − 0000.71
δ = − 0000.81
ε = − 0000.91
φ = − 0000.02
γ = − 0000.12
η = − 0000.22
ι = − 0000.32
ϕ = − 0000.42
κ = − 0000.52
λ = − 0000.62
µ = − 0000.72
ν = − 0000.82
ο = − 0000.92
π = − 0000.03

α

α

α

γ
γ

η

η

ι ι

ιι

ϕ ϕ

ϕ

ϕϕ

κ
λ

µ

ν

00.081-

000.09-

00000.0

0000.09

-180. 00 -90. 000 0. 00000 90. 0000 180. 000

I
S
P

PH I

H Y DROGEN BONDI NG ENERGY M A P FOR A L A DI P

α = − 00001.0
β = − 00002.0
χ = − 00003.0
δ = − 00004.0
ε = − 00005.0
φ = − 00006.0
γ = − 00007.0
η = − 00008.0
ι = − 00009.0
ϕ = − 00010.0
κ = − 00020.0
λ = − 00030.0
µ = − 00040.0
ν = − 00050.0
ο = − 00060.0
π = − 00070.0
θ = − 00080.0
ρ = − 00090.0

α α

α
α

α

α

α

β β

β
β

χ

χ
χ

χ χ

χ
χ

δδ

δ δ
δ δ

δ δ

δ

δ

ε

ε

ϕ

ϕ
ϕ

ϕκ

κ

κ

κ

λ

λ

µ

µ

266 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

C.3.3 Electrostatic Potential and Hydration Energy
Differences

This example illustrates the analysis of molecular dynamics trajectories by
two different tasks, analysis and table. It also illustrates how to generate
files containing plotting data in a simple tabular form that can be processed
later with your favorite graphing program.
• Analysis calculates the electrostatic field produced by the solute (in

this example the formaldehyde molecule).
• The potfield subtask is used to find the electrostatic potential.
• Plot functions are then used to display two-dimensional contours of the

potential in the output file.
• Table calculates the differences in solvation between the ground and

excited states of formaldehyde for this formaldehyde/water system over
the course of a series of trajectories.

• Using the dynamics task the evolution of the excited state formalde-
hyde using a set of atomic charges for the singlet A2 excited state of
formaldehyde.

• Starttrack/stoptrack begins a loop where frames of a trajectory are
read sequentially. This example illustrates the use of DICE functions
inside of this type of loop. For each frame of the trajectory the hydration
energies of formaldehyde with both excited and and ground state charges
are accumulated in tables for subsequent display.

Input files
formh2o.inp Main input file
formh2o.rst Initial Coordinate and velocity restart file
gscharge.dat Ground state charges
excharge.dat Excited state charges
h2cordb.dat Residue topology file
h2coprm.dat Parameter file

Output files
formh2o.out Main output file
formh2o.trj Coordinate and velocity trajectory file
formh2ogs.ps Ground State solvation energy plot (Postscript)
formh2oex.ps Excited State solvation energy plot (Postscript)
formh2odif.ps Solvation energy difference plot (Postscript)

write file formh2o.out -

title H2CO Electrostatic Potential (1A1 H2CO) and Hydration (A1/A2 H2CO) *

Impact 4.0 Command Reference Manual 267

Appendix C: Example Input Files

Task create is used to build the initial coordinates for the formaldehyde
water system.

create
build newresidue fmd file h2cordb.dat

build primary name formaldehyde fmd end

build solvent name solvent1 type spc nmol 209 h2o

quit

Task setmodel initializes the energy function for the system. The energy
function parameters are read from a file, ‘h2coprm.dat’ in this example.
Periodic boundary conditions are applied to all nonbonded solvent-solvent
and solute-solvent interactions.

setmodel
setpotential

mmechanics

quit

read parm file h2coprm.dat noprint

energy parm cutoff 7.5 listupdate 1 diel 1.0 nodist

energy molcutoff name solvent1

energy periodic name solvent1 bx 18.6206 by 18.6206 bz 18.6206

The charges for the ground and excited states of formaldehyde are read
from the two files ‘gscharge.dat’ and ‘excharge.dat’, respectively. The
two sets of charges are also stored in the two charge tables ‘gscharge’ and
‘excharge’.

read charge file excharge.dat

put ’charge’ with species:1: into ’excharge’

reset ’charge’

read charge file gscharge.dat

put ’charge’ with species:1: into ’gscharge’

quit

The analysis subtask potfield calculates the electrostatic potential due
the formaldehyde in the 4 Å cube about centered at the formaldehyde carbon
atom.

analysis
potfield

grid center name formaldehyde resn 1 atna fmc -

boxsiz 4.0 stepsiz 0.08 chgcut 10.0

include name formaldehyde

run

analysis

The following set of commands construct two-dimensional contour plots on
several planes on interest. The locations of the planes are identified by plot
title strings.

plot epot make x = 0.0 -

title h2co; y-z contour (x=0.0) * -

xlabel y distance (a) * -

ylabel z distance a * -

contour 9 at -1600.0 -1200.0 -800.0 -400.0 -200.0 0.0 -

200.0 400.0 800.0 -

268 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

postscript file cont1.ps

plot epot make y = 0.0 -

title h2co; x-z contour (y=0.0) * -

xlabel x distance (a) * -

ylabel z distance a * -

contour 9 at -1600.0 -1200.0 -800.0 -400.0 -200.0 -

0.0 200.0 400.0 800.0 -

postscript file cont2.ps

plot epot make z = 0.0 -

title h2co; x-y contour (z=0.0) * -

xlabel x distance (a) * -

ylabel y distance a * -

contour 9 at -400.0 -200.0 0.0 50.0 100.0 150.0 200.0 400.0 800.0 -

postscript file cont3.ps

plot epot make z = -0.583 -

title h2co; x-y contour plot (z= -0.583) * -

xlabel x distance (a) * -

ylabel y distance a * -

contour 9 at -400.0 -200.0 0.0 50.0 100.0 150.0 200.0 400.0 800.0 -

postscript file cont4.ps

plot epot make z = -0.291 -

title h2co; x-y contour plot (z= -0.291) * -

xlabel x distance (a) * -

ylabel y distance a * -

contour 9 at -400.0 -200.0 0.0 50.0 100.0 150.0 200.0 400.0 800.0 -

postscript file cont5.ps

quit

quit

The plots just generated (‘cont1.ps’ to ‘cont5.ps’) are shown below:

Impact 4.0 Command Reference Manual 269

Appendix C: Example Input Files

0000.2-

0000.1-

00000.0

00000.1

-2. 0000 -1. 0000 0. 00000 1. 00000 2. 00000

A

E
C
N
A
T
S
I
D

Z

Y DI ST A NCE (A)

H 2CO; Y -Z CONT OUR (X =0. 0)

α = − 00.0061
β = − 00.0021
χ = − 000.008
δ = − 000.004
ε = − 000.002
D = 000000.0
C = 0000.002
B = 0000.004
A = 0000.008

CBA

0000.2-

0000.1-

00000.0

00000.1

-2. 0000 -1. 0000 0. 00000 1. 00000 2. 00000

A

E
C
N
A
T
S
I
D

Z

X DI ST A NCE (A)

H 2CO; X -Z CONT OUR (Y =0. 0)

α = − 00.0061
β = − 00.0021
χ = − 000.008
δ = − 000.004
ε = − 000.002
D = 000000.0
C = 0000.002
B = 0000.004
A = 0000.008

α

δ

ε

DD

CBA

270 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

0000.2-

0000.1-

00000.0

00000.1

-2. 0000 -1. 0000 0. 00000 1. 00000 2. 00000

A

E
C
N
A
T
S
I
D

Y

X DI ST A NCE (A)

H 2CO; X -Y CONT OUR (Z =0. 0)

α = − 000.004
β = − 000.002
G = 000000.0
F = 00000.05
E = 0000.001
D = 0000.051
C = 0000.002
B = 0000.004
A = 0000.008

α

β

GG

F

E
D

C

C

B

BA

0000.2-

0000.1-

00000.0

00000.1

-2. 0000 -1. 0000 0. 00000 1. 00000 2. 00000

A

E
C
N
A
T
S
I
D

Y

X DI ST A NCE (A)

H 2CO; X -Y CONT OUR PL OT (Z = -0. 583)

α = − 000.004
β = − 000.002
G = 000000.0
F = 00000.05
E = 0000.001
D = 0000.051
C = 0000.002
B = 0000.004
A = 0000.008

β

GG

FE

Impact 4.0 Command Reference Manual 271

Appendix C: Example Input Files

0000.2-

0000.1-

00000.0

00000.1

-2. 0000 -1. 0000 0. 00000 1. 00000 2. 00000

A

E
C
N
A
T
S
I
D

Y

X DI ST A NCE (A)

H 2CO; X -Y CONT OUR PL OT (Z = -0. 291)

α = − 000.004
β = − 000.002
G = 000000.0
F = 00000.05
E = 0000.001
D = 0000.051
C = 0000.002
B = 0000.004
A = 0000.008

α

β

GG

F

E

D

D

C

A variety of one dimensional tables are initialized with the parameters for the
following molecular dynamics simulation. The time step in the simulation is
assigned to ‘dt’, the duration of the simulation in picoseconds is assigned to
‘ttime’, and the frequency with which to save trajectory frames is assigned
to ‘ever’. The number of times steps and the number of trajectory records
in this simulation are calculated and stored in the tables ‘mstep’ and ‘mrec’,
respectively.

put 0.001 into ’dt’ ! timestep

put 0.25 into ’ttime’ ! simulation time

put 5 into ’ever’ ! how often traj’s written

put ’ttime’ div ’dt’ into ’mstep’ ! no. of dynamics steps

put ’mstep’ div ’ever’ into ’mrec’ ! no. of traj’s written

Prior to beginning the simulation, the internal charge array is updated with
the formaldehyde charges for the excited state stored in table ‘excharge’.
The molecular dynamics simulation is performed starting from the coor-
dinates and velocities stored in the restart file named ‘formh2o.rst’, and
saving the trajectory frames in file ‘formh2o.trj’.

restore charge ’excharge’

dynamics
input cntl -

nstep ’mstep’ delt ’dt’ relax 0.01 -

stop rotations -

initialize temperature at 298.0 seed 100 -

constant temperature byspecies -

nprnt 100 tol 1.e-7

272 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

input target temperature 298.0 name formaldehyde

input target temperature 298.0 name solvent1

read restart coordinates and velocities formatted file formh2o.rst

write trajectory coordinates and velocities -

external real8 file formh2o.trj every ’ever’

run

quit

The one dimensional table ‘tstep’ is initialized with the time between se-
quential trajectories, and ‘tcount’ is initialized and will be used to hold the
running time value. The table subtask traj is then used to specify the pa-
rameters of the trajectories stored in the trajectory file ‘formh2o.trj’. This
subtask also defines which trajectories will be selected by the automatic tra-
jectory selection subtask, startrack. In this example all of the trajectory
frames will be selected. All tasks in the input file between the declarations
of starttrack and stoptrack will be executed for each of these trajectory
frames.

put ’dt’ * ’ever’ into ’tstep’

put 0 into ’tcount’

table
traj nfile 1 maxrec ’mrec’ nskip 1 delt ’dt’ -

coordinates and velocities every ’ever’ traj fnames -

external file formh2o.trj

starttrack

quit

The internal charge array is updated with formaldehyde ground state
charges, and the hydration energy for formaldehyde is calculated and stored
in the table ‘hydout’. The sum of the atomic hydration energies is stored in
table ‘esolvgs’.

restore charge ’gscharge’

table
reset ’hydration’

quit
analysis

energy solvation of name formaldehyde by name solvent1 echooff

quit
put ’hydration’ with species:formaldehyde:atoms:*: into ’hydout’

put sum ’hydout’ into ’esolvgs’

The internal charge array is updated with formaldehyde excited state
charges, and the hydration energy for formaldehyde is calculated and stored
in the table ‘hydout’. The sum of the atomic hydration energies is stored in
table ‘esolvex’. The hydration energy tables ‘esolvgs’ and ‘esolvex’ have
three subfields. In this example, only the first subfield corresponding to the
total hydration energy is of interest.

restore charge ’excharge’

table
reset ’hydration’

quit

Impact 4.0 Command Reference Manual 273

Appendix C: Example Input Files

analysis
energy solvation of name formaldehyde by name solvent1 echooff

quit
put ’hydration’ with species:formaldehyde:atoms:*: into ’hydout’

put sum ’hydout’ into ’esolvex’

The total solvation energies for the ground and excited states are appended
to tables ‘gstable’ and ‘extable’. The total solvation energy difference is
stored in the table named ‘diftable’. The time corresponding to the current
trajectory is stored in table ‘timelist’. At the end of this trajectory cycle,
the running time variable is updated.

put ’timelist’ append ’tcount’ into ’timelist’

put ’gstable’ append ’esolvgs_1’ into ’gstable’

put ’extable’ append ’esolvex_1’ into ’extable’

put ’esolvex_1’ - ’esolvgs_1’ into ’diff’

put ’diftable’ append ’diff’ into ’diftable’

put ’tstep’ + ’tcount’ into ’tcount’

table
stoptrack

quit

The resulting tables are printed in tabular form in the output file, and are
also written in tabular form to the files ‘formh2ogs.gr’, ‘formh2oex.gr’
and ‘formh2odif.gr’. The latter can be processed by a program such as
Gnuplot1 or Grace2. The plot below combines the three data tables; the
legends were added outside of Impact.

table
printoptions title Ground state solvation energies *

show ’timelist’ ’gstable’

printoptions title Excited state solvation energies *

show ’timelist’ ’extable’

printoptions title Solvation energy differences (ex-gs) *

show ’timelist’ ’diftable’

plot ’timelist’ ’gstable’ tabular file formh2ogs.gr -

xmin 0.0 xmax ’ttime’ ymin -25.0 ymax 0.0 ylabel gs esolv *

plot ’timelist’ ’extable’ tabular file formh2oex.gr -

xmin 0.0 xmax ’ttime’ ymin -25.0 ymax 0.0 ylabel ex esolv *

plot ’timelist’ ’diftable’ tabular file formh2odif.gr -

xmin 0.0 xmax ’ttime’ ymin 0.0 ymax 10.0 ylabel ediff *

quit
end

1 http://www.gnuplot.info
2 http://plasma-gate.weizmann.ac.il/Grace/

274 Impact 4.0 Command Reference Manual

http://www.gnuplot.info
http://plasma-gate.weizmann.ac.il/Grace/

Appendix C: Example Input Files

0.00 0.05 0.10 0.15 0.20 0.25
Timelist

−20.0

−10.0

0.0

10.0

E
ne

rg
y

(k
ca

l/m
ol

)
Time behavior of solvation energy

Comparison between excited and ground states

Solvation (ground state)
Solvation (excited state)
Difference

C.3.4 Molecular Dynamics Analysis (NVE Ensemble)

This example illustrates many of the features of the mdanalysis task for a
glycine/water simulation.

Input files
glyh2o.inp Main input file
egly.dat Glycine residue data file (ext. atom)
glyparam.dat Parmeter file
spcconst.dat Constraint file
glyh2o.rst Coordinate and velocity restart file

Impact 4.0 Command Reference Manual 275

Appendix C: Example Input Files

Output files
glyh2o.out Main output file
glyh2o.trj Coordinate and velocity trajectory file
rdfN-HW1.gr RDF data for N-HW1 in tabular format
rdfN-HW1i.gr Integral of the previous one
rdfN-OW.gr RDF data for N-OW in tabular format
rdfN-OWi.gr Integral of the previous one
rdfCA-HW1.gr RDF data for CA-HW1 in tabular format
rdfCA-HW1i.gr Integral of the previous one
rdfCA-OW.gr RDF data for CA-OW in tabular format
rdfCA-OWi.gr Integral of the previous one
rdfC-HW1.gr RDF data for C-HW1 in tabular format
rdfC-HW1i.gr Integral of the previous one
rdfC-OW.gr RDF data for C-OW in tabular format
rdfC-OWi.gr Integral of the previous one
rdfO1-HW1.gr RDF data for O1-HW1 in tabular format
rdfO1-HW1i.gr Integral of the previous one
rdfO1-OW.gr RDF data for O1-OW in tabular format
rdfO1-OWi.gr Integral of the previous one
rdfOH-HW1.gr RDF data for OH-HW1 in tabular format
rdfOH-HW1i.gr Integral of the previous one
rdfOH-OW.gr RDF data for OH-OW in tabular format
rdfOH-OWi.gr Integral of the previous one
bedN-P.gr Binding energy distribution for N
bedCA-P.gr Binding energy distribution for CA
bedC-P.gr Binding energy distribution for C
bedO1-P.gr Binding energy distribution for O1
bedOH-P.gr Binding energy distribution for OH
vcf.gr Velocity autocorrelation function
spec.gr Fourier spectrum of the previous one

set FFIELD AMBER86

write file glyh2o.out -

title Molecular Dynamics Analysis *

Task create is used to build the glycine water system. In this example
an extended atom model of glycine is used. The residue topology for this
glycine model is stored in file ‘egly.dat’.

create
build newresidue egl file egly.dat

build primary name glycine type other egl end

build solvent name solvent1 type spc nmol 207 h2o

print ic name glycine bond angle tors

print structure name glycine bond angle torsion excl

print tree name glycine

quit

276 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

The energy function is initialized with task setmodel. In this simulation
a molecular cutoff will be used for nonbonded interactions for the solvent.
Periodic boundary conditions are applied to nonbonded interactions between
solvent molecules and between the solvent and glycine.

setmodel
setpotential

mmechanics ewald

quit

read parm file glyparam.dat noprint

energy parm listupdate 1 diel 1.0 nodist

energy periodic name glycine bx 18.6206 by 18.6206 bz 18.6206

energy periodic name solvent1 bx 18.6206 by 18.6206 bz 18.6206

energy constraint read file spcconst.dat

energy molcutoff name solvent1

quit

The molecular dynamics simulation is run for 4 ps at constant total energy,
using the r-RESPA integrator. The coordinates and velocities are stored on
every cycle in the trajectory file ‘glyh2o.trj’

dynamics
input cntl -

nstep 2000 delt 0.002 relax 0.01 seed 100 -

cons totalenergy nprnt 50 tol 1.e-7

read restart coordinates and velocity formatted file glyh2o.rst

write trajectory coordinates and velocities every 1 -

external file glyh2o.trj

run rrespa fast 3

quit

Task mdanalysis is used to calculate the radial distribution function and
binding energy distribution function between selected glycine atoms and
solvent atoms, treating the solvent protons as equivalent atoms. The cal-
culation is performed using the coordinates stored in the single trajectory
file ‘glyh2o.trj’. The details of the simulation are specified in the input
subtask in the same manner as in the dynamics task. Note that we must
specify several files to obtain all the data in tabular format; this is for two
reasons: (a) the radial distribution functions (as well as the binding energy
distributions) are computed for all atoms in the solute, against all atoms in
the solvent molecule; and (b) for each rdf the corresponding integral is also
computed. All these files are written in tabular format, for later processing
with your favorite graphing package.

mdanalysis
input trajectories nfiles 1 external fnames file glyh2o.trj -

coordinates and velocities every 1 maxrec 2000 nskip 1 nobox delt 0.001 -

rlow 0.0 rup 7.5 ngridr 100 -

elow -100.0 eup 100.0 ngride 100 dw 1.0

static rdf iatom name glycine ires all atomnames n ca c o1 oh end -

jatom name solvent1 atomnames hw1 hw2 ow end -

equivalent hw1 hw2 end

Impact 4.0 Command Reference Manual 277

Appendix C: Example Input Files

static rdf run plrdf plbed wrrdf wrbed tabular -

file "rdfN-HW1.gr" file "rdfN-HW1i.gr" -

file "rdfN-OW.gr" file "rdfN-OWi.gr" -

file "rdfCA-HW1.gr" file "rdfCA-HW1i.gr" -

file "rdfCA-OW.gr" file "rdfCA-OWi.gr" -

file "rdfC-HW1.gr" file "rdfC-HW1i.gr" -

file "rdfC-OW.gr" file "rdfC-OWi.gr" -

file "rdfO1-HW1.gr" file "rdfO1-HW1i.gr" -

file "rdfO1-OW.gr" file "rdfO1-OWi.gr" -

file "rdfOH-HW1.gr" file "rdfOH-HW1i.gr" -

file "rdfOH-OW.gr" file "rdfOH-OWi.gr" -

file "bedN-P.gr" file "bedCA-P.gr" -

file "bedC-P.gr" file "bedO1-P.gr" -

file "bedOH-P.gr"

file close

quit

This step performs dynamic analysis of the solvent. The velocity auto-
correlation function and its power spectrum are calculated and saved in
tabular format. The processed plots are shown right after this listing.

mdanalysis
input trajectories nfiles 1 external fnames file glyh2o.trj -

coordinates and velocities every 1 maxrec 2000 nskip 1 nobox delt 0.001 -

rlow 0.0 rup 7.5 ngridr 100 -

elow -100.0 eup 100.0 ngride 100 dw 1.0 msteps 2000

dynamic solvation vcf plvcf wrvcf plspectrum wrspectrum -

tabular file "vcf.gr" file "spec.gr"

file close

quit
end

Here we show all the radial distribution functions, followed by the binding
energy distribution functions, and then the velocity autocorrelation function.
Plots like these can be generated by programs such as Gnuplot3 and Grace4.
The latter has a nice Motif-style graphical user interface.

3 http://www.gnuplot.info
4 http://plasma-gate.weizmann.ac.il/Grace/

278 Impact 4.0 Command Reference Manual

http://www.gnuplot.info
http://plasma-gate.weizmann.ac.il/Grace/

Appendix C: Example Input Files

0.0 2.0 4.0 6.0 8.0
r (Angstroms)

0.0

0.5

1.0

1.5

g N
,H

W
1(

r)

Nitrogen−Water Hydrogen Radial Distribution Function
(Ewald, 4 picoseconds)

0.0 2.0 4.0 6.0 8.0
r (Angstroms)

0.0

0.5

1.0

1.5

g N
,O

W
(r

)

Nitrogen−Water Oxygen Radial Distribution Function
(Ewald, 4 picoseconds)

Impact 4.0 Command Reference Manual 279

Appendix C: Example Input Files

0.0 2.0 4.0 6.0 8.0
r (Angstroms)

0.0

0.5

1.0

1.5

g C
A

,H
W

1(
r)

α Carbon−Water Hydrogen Radial Distribution Function
(Ewald, 4 picoseconds)

0.0 2.0 4.0 6.0 8.0
r (Angstroms)

0.0

0.5

1.0

1.5

g C
A

,O
W
(r

)

α Carbon−Water Oxygen Radial Distribution Function
(Ewald, 4 picoseconds)

280 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

0.0 2.0 4.0 6.0 8.0
r (Angstroms)

0.0

0.5

1.0

1.5

g C
,H

W
1(

r)

Carbon−Water Hydrogen Radial Distribution Function
(Ewald, 4 picoseconds)

0.0 2.0 4.0 6.0 8.0
r (Angstroms)

0.0

0.5

1.0

1.5

2.0

g C
,O

W
(r

)

Carbon−Water Oxygen Radial Distribution Function
(Ewald, 4 picoseconds)

Impact 4.0 Command Reference Manual 281

Appendix C: Example Input Files

0.0 2.0 4.0 6.0 8.0
r (Angstroms)

0.0

0.5

1.0

1.5

g O
1,

H
W

1(
r)

Oxygen−Water Hydrogen Radial Distribution Function
(Ewald, 4 picoseconds)

0.0 2.0 4.0 6.0 8.0
r (Angstroms)

0.0

0.5

1.0

1.5

g O
1,

O
W
(r

)

Oxygen−Water Oxygen Radial Distribution Function
(Ewald, 4 picoseconds)

282 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

0.0 2.0 4.0 6.0 8.0
r (Angstroms)

0.0

1.0

2.0

3.0

4.0

g O
H

,H
W

1(
r)

OH−Water Hydrogen Radial Distribution Function
(Ewald, 4 picoseconds)

0.0 2.0 4.0 6.0 8.0
r (Angstroms)

0.0

1.0

2.0

3.0

4.0

g O
H

,O
W
(r

)

OH−Water Oxygen Radial Distribution Function
(Ewald, 4 picoseconds)

Impact 4.0 Command Reference Manual 283

Appendix C: Example Input Files

−100.0 −50.0 0.0 50.0 100.0
E (kcal/mol)

0.00

0.10

0.20

0.30

0.40
F

re
qu

en
cy

Binding Energy Distribution for N
(Ewald, 4 picoseconds)

−100.0 −50.0 0.0 50.0 100.0
E (kcal/mol)

0.000

0.010

0.020

0.030

0.040

0.050

F
re

qu
en

cy

Binding Energy Distribution for Cα

(Ewald, 4 picoseconds)

284 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

−100.0 −50.0 0.0 50.0 100.0
E (kcal/mol)

0.000

0.010

0.020

F
re

qu
en

cy

Binding Energy Distribution for C
(Ewald, 4 picoseconds)

−100.0 −50.0 0.0 50.0 100.0
E (kcal/mol)

0.00

0.05

0.10

0.15

0.20

F
re

qu
en

cy

Binding Energy Distribution for Oxygen
(Ewald, 4 picoseconds)

Impact 4.0 Command Reference Manual 285

Appendix C: Example Input Files

−100.0 −50.0 0.0 50.0 100.0
E (kcal/mol)

0.00

0.10

0.20

0.30

0.40

F
re

qu
en

cy

Binding Energy Distribution for OH
(Ewald, 4 picoseconds)

0.00 0.02 0.04 0.06 0.08 0.10
t (ps)

−0.5

0.0

0.5

1.0

<
v(

t)
 v

(0
)>

Velocity Autocorrelation Function
(Ewald, 4 picoseconds)

286 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

0.0 20.0 40.0 60.0 80.0 100.0
f (1/ps)

0.005

0.010

0.015

0.020

0.025

F
ou

r(
<

v(
t)

 v
(0

)>
)

Fourier Spectrum of Velocity Autocorrelation Function
(Ewald, 4 picoseconds)

C.3.5 Dipeptide/H2O MD Simulation and Analysis
(NPT Ensemble)

This example illustrates the preparation of a protein/water system composed
of the dipeptide ALA-GLY and a box of 196 SPC-type water molecules.
Once the coordinate structures are built and molecular dynamics tasks have
been performed, the mdanalsysis and table tasks, and DICE commands,
are used to analyze the resulting trajectories. In this example, the system is
prepared for a constant pressure molecular dynamics simulation.

Input files
rdfandrms.inp Main input file
spchoh.dat Solvent coordinate file
paramstd.dat Parameter file
spcconst.dat Constraint file
rdfandrms.rst Coordinate and velocity restart file
mdagwat.inc MDAnalysis included file

Impact 4.0 Command Reference Manual 287

Appendix C: Example Input Files

Output files
rdfandrms.out Main output file
rdfandrms.trj Coordinate and velocity trajectory file
int1c.dat Integrated RDF data file
int1ca.dat Integrated RDF data file
int1cb.dat Integrated RDF data file
int1n.dat Integrated RDF data file
int1o.dat Integrated RDF data file
int2c.dat Integrated RDF data file
int2ca.dat Integrated RDF data file
int2n.dat Integrated RDF data file
int2o.dat Integrated RDF data file
rdf1c.dat RDF plot file
rdf1ca.dat RDF plot file
rdf1cb.dat RDF plot file
rdf1n.dat RDF plot file
rdf1o.dat RDF plot file
rdf2c.dat RDF plot file
rdf2ca.dat RDF plot file
rdf2n.dat RDF plot file
rdf2o.dat RDF plot file

set FFIELD AMBER86

write file rdfandrms.out -

title Dipeptide/H2O MD Simulation using DICE and MDANALYSIS *

Task create is used to build the initial dipeptide/water structure.
create

build primary name dipep type protein ala gly end

build solvent name solvent1 type spc nmol 216 h2o

quit

Task setmodel initializes the energy function for this calculation. The coor-
dinates of a 18.6206 Å cube of solvent in this example are read from the file,
‘spchoh.dat’. Periodic boundary conditions will be applied to nonbonded
interactions between solvent molecules and nonbonded solute-solvent inter-
actions. Nonbonded energy calculations between solvent molecules will use a
molecular cutoff, and all nonbonded interactions will used a cutoff distance
of 7.5 Å. SHAKE constraints for molecular dynamics are read from the file
‘spcconst.dat’.

setmodel
setpotential

mmechanics tail

quit

read parm file paramstd.dat noprint

solvent old file spchoh.dat bx 18.6206 by 18.6206 bz 18.6206

energy parm cutoff 7.5 listupdate 4 diel 1.0 nodistance print 100

288 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

energy periodic name solvent1 bx 18.6206 by 18.6206 bz 18.6206

energy molcutoff name solvent1

energy constraint read file spcconst.dat

quit
minm
conjugate dx0 0.1 dxm 1.0 rest 50

input cntl mxcyc 1000 rmscut .05 deltae .001

run

quit

The molecular dynamics simulation is performed starting from the coordi-
nates and velocities in ‘rdfandrms.dat’. The trajectories for the simulation
are saved in ‘rdfandrms.trj’ every ‘nskip’ iterations. The duration and the
time step for the simulation are stored in ‘time’ and ‘delta’. A 10 picosecond
simulation is run, but using a time step of 4 femtoseconds. This time step is
too large for the usual Verlet integrator (even when using SHAKE/RATTLE),
so we use instead the r-RESPA integrator, but updating the bonding (fast)
forces four times as often.

put 10 into ’nskip’

put 10.0 into ’time’

put 0.001 into ’delta’

put ’time’ / ’delta’ into ’nstep’

dynamics
input cntl -

nstep ’nstep’ delt ’delta’ relax 0.10 taup 0.10 -

seed 100 stop rotations -

constant temperature constant pressure -

nprnt 50 tol 1.e-7 dvdp 4.96e-5 density 1.3 -

initialize temperature at 50.0

input cntl name solvent1 cmscale

input cntl name dipep atscale

input target temperature 298.0 pressure 1.0

! read restart coordinates and velocities box -

! formatted file rdfandrms.rst

write trajectory coordinates box external -

file rdfandrms.trj every ’nskip’

run rrespa fast 4

write restart coordinates and velocities box -

formatted file rdfandrms.rst

quit

The radial distribution functions and the integrated radial distribution func-
tions are calculated here for all of the heavy atoms on each residue. The
mdanalysis parameters are contained in an the following included file:

:mdanallist

input nfile 1 rlow ’rlow’ rup ’rhigh’ ngridr 50 maxrec ’maxrec’ -

nskip ’nskip’ elow -50.0 eup 50.0 ngride 100 ngridt 100 -

ngrida 100 delt 0.001 dw 1.0 -

box coordinates every 50 -

trajectory external fname file rdfandrms.trj

return

Impact 4.0 Command Reference Manual 289

Appendix C: Example Input Files

This following section of the input file uses a set of nested DICE while loops
to create the lists of heavy atoms on each residue. These lists are passed
to the mdanalysis task. Unique filenames for the rdf output plot files are
created by DICE commands inside the inner while loop. At each step a couple
of files containing, respectively, the rdf and its integral, are written out in
tabular form.

put sizeof ’residues’ into ’restot’

put ’nstep’ / ’nskip’ into ’maxrec’

put 2.0 into ’rlow’ ! parameters for rdf function

put 5.0 into ’rhigh’

put 1.0 into ’resn’ ! counter for residue number

put rdf into ’start1’ ! initial string for output file names

put int into ’start2’

while ’resn’ le ’restot’

put ’atoms’ with species:1:residues:’resn’:atoms:*: into ’temp’

put ’temp’ without atoms:h*: into ’temp’

put sizeof ’temp’ into ’tsize’

if ’tsize’ gt 0

put 1 into ’i’

while ’i’ le ’tsize’

put index ’i’ ’temp’ into ’tempi’ ! get atom name character string

put (char ’resn’) concat ’tempi’ concat $.dat$ into ’endit’

put ’start1’ concat ’endit’ into ’fname1’

put ’start2’ concat ’endit’ into ’fname2’

show ’fname1’ ’fname2’

mdanalysis
call mdanallist file mdagwat.inc

static rdf iatom name dipep inres ’resn’ atom ’tempi’ end -

jatom name solvent1 jnres 1 atom ow end

static rdf run -

plrdf tabular file ’fname1’ -

file ’fname2’

file close

quit
put ’i’ + 1 into ’i’

endwhile
endif

put ’resn’ + 1 into ’resn’

endwhile

Here, we calculate the RMS fluctuations with translations and rotations
removed. Only species 1 is used in these calculations.

table
traj nfile 1 maxrec ’maxrec’ nskip ’nskip’ delt ’delta’ -

coordinates every ’nskip’ box trajectory -

external fname file rdfandrms.trj

put 0 into ’count’ ! first calculate avg structure

quit
put 0 into ’sumr’

put 0 into ’sumr2’

290 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

table
starttrack

quit
reset ’cord’

put ’cord’ with species:1: into ’tcord’

put sum ’tcord’ into ’top’

put ’top’ / (sizeof ’tcord’) into ’com’

put ’tcord’ - ’com’ into ’tcord’

put ’tcord’ + ’sumr’ into ’sumr’

put ’count’ + 1 into ’count’

table
stoptrack

close

quit
put ’sumr’ / ’count’ into ’avgr’

reset ’sumr’

Now we find the best fit of each structure to the average structure and store
the squares of the deviations from the average structure. The numbers given
are in angstroms squared and represent the average squared deviation of the
structure with rotational and translational motion removed.

table
traj nfile 1 maxrec ’maxrec’ nskip ’nskip’ delt ’delta’ -

coordinates every ’nskip’ box trajectory -

external fname file rdfandrms.trj

quit
put 0 into ’count’

put 0 into ’sumr’

table
starttrack

quit
reset ’cord’

reset ’newcord’

reset ’r2’

put ’cord’ with species:1: into ’tcord’

put rmsdev ’avgr’ ’tcord’ into ’newcord’

put ’newcord’ * ’newcord’ into ’r2’

put ’r2’ + ’sumr2’ into ’sumr2’

put ’newcord’ + ’sumr’ into ’sumr’

put ’count’ + 1 into ’count’

table
stoptrack

close

quit
put ’sumr’ / ’count’ into ’avgr’ ! new average structure

put ’sumr2’ / ’count’ into ’sumr2’ ! average squared deviation for each atom

put ’sumr2’ - ’avgr’ * ’avgr’ into ’msfluct’ ! calculate mean squared fluctuation

put ’msfluct_1’ + ’msfluct_2’ + ’msfluct_3’ into ’msfluct’ ! sum components

put avg ’msfluct’ by ’residues’ into ’allres’ ! msfluct may be sorted by atoms,residues

! average by residue

show ’allres’

Impact 4.0 Command Reference Manual 291

Appendix C: Example Input Files

end

The following plots were generated with an external 2D plotting program
from the data printed out in tabular format above. Only some of the rdfs
are shown for illustration.

2.0 3.0 4.0 5.0
r (Angstroms)

0.0

0.5

1.0

1.5

2.0

R
D

F

Cα Radial Distribution Function

292 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

2.0 3.0 4.0 5.0
r (Angstroms)

0.0

1.0

2.0
R

D
F

Cβ Radial Distribution Function

2.0 3.0 4.0 5.0
r (Angstroms)

0.0

0.5

1.0

1.5

R
D

F

N2 Radial Distribution Function

Impact 4.0 Command Reference Manual 293

Appendix C: Example Input Files

2.0 3.0 4.0 5.0
r (Angstroms)

0.0

0.5

1.0

1.5
R

D
F

O2 Radial Distribution Function

C.3.6 Surface Area Versus Solvation Energy for a
Dipeptide

This example illustrates some of the features of the task table and task
analysis in the calculation of the relationship between surface area and
solvation energy for a dipeptide

Input files
alagly.inp Main input file
spchoh.dat Solvent coordinate file
paramstd.dat Parameter file
spcconst.dat Constraint file
alagly.rst Coordinate restart file

Output files
alagly.out Main output file
hydr.gr Tabular data to be plotted

write file alagly.out -

294 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

title Surface area versus solvation energy for a dipeptide *

Task create is used the build the initial dipeptide solvent system.
create
build primary name solute1 type protein ala gly end

build solvent name solvent1 type spc nmol 199 h2o

quit

The charges on each solute atom are copied to a new table named, ‘cg’, and
the charges of a single solvent molecule are copied to a new table named,
‘cg1’. These new tables are then printed.

table
put ’charge’ with species:solute1: into ’cg’

put ’charge’ with species:solvent1:molecules:1: into ’cg1’

printoptions title Solute charges *

print ’cg’

printoptions title Solvent charges*

print ’cg1’

quit

The energy function for the solute-solvent system is initialized.
setmodel

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

energy parm cutoff 7.5 listupdate 10 diel 1.0 nodistance

energy periodic name solvent1 bx 18.6206 by 18.6206 bz 18.6206

energy molcutoff name solvent1

energy constraint read file spcconst.dat

quit

The system is minimized starting with the coordinates in the restart file
‘alagly.rst’.

minm
input cntl mxcyc 50

steep dx0 0.05 dxm 1.0

read restart coordinates formatted file alagly.rst

run

quit

The surface area and solvation energy for the solute are calculated for the
minimized system.

analysis
surface name solute1 echooff noprint

energy solvation of name solute1 by name solvent1 scutoff 8.0

quit

The result of the surface area calculation after minimization, which is held in
the internal table ‘surfacearea’, is copied to a new table, ‘sa1’, for all of the
atoms of the solute species. The result of the solvation energy calculation,
which is held in the the internal table ‘hydration’, is copied to a new table,

Impact 4.0 Command Reference Manual 295

Appendix C: Example Input Files

‘hydrone’, for all of the atoms of the solute species. These new tables are
then printed and plotted in the output file.

table
put ’surfacearea’ with species:solute1: into ’sa1’

put ’hydration’ with species:solute1: into ’hydrone’

printoptions title Solvation energy of solute *

print ’hydrone’

printoptions title Surface area of solute *

print ’sa1’

quit

Here, a short molecular dynamics simulation is run and then the surface
areas and solvation energies are recomputed.

dynamics
input cntl -

nstep 50 delt 0.001 relax 0.01 -

seed 100 constant temperature byspecies -

initialize temperature at 298.0 -

nprnt 5 tol 1.e-7

input target temp 298.0 name solute1 temp 298.0 name solvent1

run

quit

The result of the surface area calculation, which is held in the internal table
‘surfacearea’, is copied to a new table, ‘sa2’, for all of the atoms of the
solute species. The result of the solvation energy calculation, which is held
in the the internal table ‘hydration’, is copied to a new table, ‘hydrtwo’,
for all of the atoms of the solute species. These new tables are printed in a
tabular form in file ‘hydr.gr’, which is then processed by Grace5 to generate
the PostScript plot that appears after this listing.

analysis
surf name solute1 echooff noprint

energy solvation of name solute1 by name solvent1 scutoff 8.0

quit
table
put ’surfacearea’ with species:solute1: into ’sa2’

put ’hydration’ with species:solute1: into ’hydrtwo’

printoptions title Solute solvation energy after dynamics *

print ’hydrtwo’

printoptions title Solute surface area after dynamics *

print ’sa2’

plot ’sa2’ ’hydrtwo’ tabular file hydr.gr

quit
end

5 http://plasma-gate.weizmann.ac.il/Grace/

296 Impact 4.0 Command Reference Manual

http://plasma-gate.weizmann.ac.il/Grace/

Appendix C: Example Input Files

0.0 10.0 20.0 30.0 40.0 50.0
Surface Area (Angstrom

2
)

−20.0

−10.0

0.0

10.0

H
yd

ra
tio

n
E

ne
rg

y
(k

ca
l/m

ol
)

Surface Area vs. Hydration
(Ala−Gly dipeptide)

C.3.7 Dynamical Surface Area Calculation

In this example DICE, table, and analysis features are illustrated in the
calculation of the surface area of an α-helical protein fragment during the
course of a molecular dynamics simulation.

Input files
alphahelix.inp Main input file
alphahelix.pdb Coordinate file (IMPACT format)
paramstd.dat Parameter file
alphahelix.rst Coordinate and velocity restart file

Impact 4.0 Command Reference Manual 297

Appendix C: Example Input Files

Output files
alphahelix.out Main output file
alphahlx.meta Plot file (Meta format)
ahelixrst1 Coordinate and velocity restart files
ahelixrst2 Coordinate and velocity restart files
ahelixrst3 Coordinate and velocity restart files
ahelixrst4 Coordinate and velocity restart files
ahelixrst5 Coordinate and velocity restart files

write file alphahelix.out -

title Dynamical Surface Area Calculation *

Task create is used to build the α helix protein fragment. In this ex-
ample the sequence and the initial coordinates are read from the file,
‘alphahelix.xyz’’.

create
build primary name ahelix type protein read file alphahelix.xyz

read coordinates name ahelix file alphahelix.xyz

quit

The energy function for this simulation is initialized using setmodel. SHAKE
constraints are applied to both bonds and lone pairs.

setmodel
setpotential

mmechanics

quit

read parm file paramstd.dat noprint

energy parm cutoff 7.5 listupdate 10 diel 1.0 distance

energy constraint bond lonepair

quit

The table ’counter’ is a one dimensional integer table that is given an
initial value of 1. This table is used as the control variable for the while
loop.

put 1 into ’counter’

while ’counter’ le 5

The table ’current’ is a one dimensional character table that holds a file
name that identifies the restart file that will be written in this iteration. It is
assigned the value of the character constant ’ahelixrst’ and the character
representation of ’counter’.

put $ahelixrst$ concat char ’counter’ into ’current’

Here, a short molecular dynamics simulation is run starting with the coor-
dinates and velocities found on the restart file. The restart file is selected
according to the value of ’counter’.

dynamics
input cntl -

nstep 10 delt 0.001 relax 0.01 seed 100 stop rotations -

constant temperature nprnt 20 tol 1.0e-7

298 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

input target temperature 298.0 name ahelix

if ’counter’ eq 1

read restart coordinates and velocities formatted file alphahelix.rst

else

read restart coordinates and velocities formatted file ’previous’

endif

run

write restart coordinates and velocities formatted file ’current’

quit

Task analysis calculates the surface area with the current coordinates.
analysis

surface name ahelix echooff noprint

quit

The surface area for the HN proton on methione(5) is copied into the table
named ’temp’ and this table is appended to the table ’timesurf’. The
current value of the stored in ’counter’ is then appended to the table named
’time’. The current file name is copied into the table named ’previous’
and the value of ’counter’ is incremented.

put ’surfacearea’ with residues:5:atoms:hn: into ’temp’

put ’timesurf’ append ’temp’ into ’timesurf’

put ’time’ append ’counter’ into ’time’

reset ’surfacearea’

put ’current’ into ’previous’

put ’counter’ + 1 into ’counter’

endwhile

The contents of tables ’time’ and ’timesurf’ are printed in the output file,
and the data from these tables is also written to the file ‘alphahlx.meta’ in
an IMPACT device independent format for subsequent plotting.

table
plot ’time’ ’timesurf’ delay file alphahlx.meta

print ’time’ ’timesurf’

quit
end

C.3.8 Surface Area Statistics for Rhizopuspepsin

In this example, features of tasks analysis and table are illustrated in the
calculation of the average surface areas for alanine and phenylalanine in the
protein rhizopuspepsin.

Input files
rhizopus.inp Main input file
2apr.pdb Coordinate file (PDB format)

Output files
rhizopus.out Main output file

Impact 4.0 Command Reference Manual 299

Appendix C: Example Input Files

write file rhizopus.out -

title Statistics of Surface Areas for Rhizopuspepsin *

The structure of the protein is built using task create. In this example the
sequence information and the coordinates are read from a Brookhaven PDB
format file.

create
build primary name rhizopus type protein read file 2apr.pdb

read coordinates brookhaven name rhizopus file 2apr.pdb

quit

Calculate the surface area for this system and supress the detailed printing
in this task.

analysis
surface name rhizopus echooff noprint

quit
table

Calculate sum of the surface areas for each residue and store the result in
the table named ’surfres’.

put sum ’surfacearea’ by residues:*: into ’surfres’

print ’surfres’

Calculate surface area averages for all of the alanine and phenylalanine
residues and store these results in the tables ’avgala’ and ’avgphe’, re-
spectively.

put avg (’surfres’ with residues:ala*:) into ’avgala’

put avg (’surfres’ with residues:phe*:) into ’avgphe’

Print the resulting tables of averages, ’avgala’ and ’avgphe’.
printoptions title Average surface area of alanine residues *

show ’avgala’

printoptions title Average surface area of phenylalinine residues *

show ’avgphe’

quit
end

C.3.9 Normal Modes of Excited State Imidazole

In this example the normal modes and frequencies at the nuclear equilibrium
positions in the first excited state of imidazole. The results of this calculation
are retained for later use in a resonance raman calculation.

Input files
imdex.inp Main input file
imdex.dat Residue topology file for excited state of imidazole
imdexprm.dat Energy parameters for excited state of imidazole

300 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

Output files
imdex.out Main output file
exmodes.dat Normal modes (frequencies and coordinates) for excited state
imdex.rst Nuclear equilibrium configuration for excited state

It is a good idea to always tell IMPACT explicitly where to put the output,
and to choose a descriptive title.

write file imdex.out -

title Normal Modes of Excited State Imidazole*

Next, as usual, one has to create the molecule(s). In this case we are dealing
with only one molecule (imidazole) and thus the creation is particularly
simple.

create
build newresidue imde file imdex.dat

build primary type other name eximidazole imde end

quit

After the molecule has been created, and before doing anything involving
energy (force) calculations, the energy model parameters have to be set.
We choose the standard model (which has only harmonic bonds, angles and
torsions) and read the parameters appropriate to the first electronic excited
state from the file ‘imdexprm.dat’, whose contents follow:

*

* Imidazole parameters

*

CC 12.01

CV 12.01

CR 12.01

H 1.008

HC 1.008

NA 14.01

NB 14.01

BOND

CR -NB 475. 1.394 HIS(MOD)

CR -NA 475. 1.411 HIS

CC -NA 475. 1.387 HIS

CC -CV 525. 1.452 HIS

CV -NB 475. 1.363 ADE,GUA,HIS

CR -HC 440. 1.080

H -NA 334. 1.01 URA,GUA,HIS

CC -HC 440. 1.080

CV -HC 440. 1.080

THET

NA -CR -NB 70. 111.6 HIS(OL)

CC -NA -CR 70. 107.3 HIS(OL)

CV -CC -NA 70. 105.9 HIS(OL)

CC -CV -NB 70. 109.9 HIS(OL)

CR -NB -CV 70. 105.3 HIS(OL)

HC -CR -NB 30. 120.0

Impact 4.0 Command Reference Manual 301

Appendix C: Example Input Files

CR -NA -H 30. 126.35 HIS(OL)

HC -CR -NA 30. 120.0

CV -CC -HC 30. 119.7

HC -CC -NA 30. 120.0

CC -CV -HC 30. 120.0

HC -CV -NB 30. 120.0

CC -NA -H 30. 126.35 HIS(OL)

CC -NA -H 30. 126.35 HIS(OL)

CR -NA -H 30. 126.35 HIS(OL)

PHI

X -CC -CV -X 4 14.3 180. 2.

X -CC -NA -X 4 5.6 180. 2.

X -CC -NB -X 2 4.8 180. 2.

X -CR -NA -X 4 9.3 180. 2.

X -CR -NB -X 2 10.0 180. 2.

X -CV -NB -X 2 4.8 180. 2.

IPHI

X -X -NA -H 1.0 180. 2.

X -X -NB -H 1.0 180. 2.

X -X -C* -HC 0.0 180. 2.

X -X -CR -HC 1.0 180. 2.

X -X -CC -HC 1.0 180. 2.

X -X -CV -HC 1.0 180. 2.

NBON

C* 1.6481626 0.1200000 MISSING UNTIL 7/12/88 KOLLMAN(85)

CC 1.6481626 0.1200000 MISSING UNTIL 7/12/88 KOLLMAN(85)

CR 1.6481626 0.1200000 MISSING UNTIL 7/12/88 KOLLMAN(85)

CV 1.6481626 0.1200000 MISSING UNTIL 7/12/88 KOLLMAN(85)

H 0.8908987 0.0200000

HC 1.3719840 0.0100000 CHANGED FROM(1.225,0.1520) TO KOLLMAN(85)

N* 1.5590728 0.1600000 MISSING UNTIL 7/12/88 KOLLMAN(85)

NA 1.5590728 0.1600000 MISSING UNTIL 7/12/88 KOLLMAN(85)

NB 1.5590728 0.1600000

HBON

H -NB 7557.00 2385.00

END

setmodel
setpotential

mmechanics

quit

read parm file imdexprm.dat noprint

energy parm cutoff 7.5 listupdate 5 diel 1.0 nodistance print 200

quit

Since we are going to compute the normal modes and equilibrium configu-
ration it is essential that we first minimize the energy. If this is not done
the resulting normal modes will not be correct. After the minimization is
done we write the equilibrium nuclear configuration to the file ‘imdex.rst’,
which will be read in during the resonance raman calculation.

minm
conjugate dx0 0.005

302 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

input cntl mxcyc 1500 rmscut 0.000001 deltae 0.000001

write restart coordinates formatted file imdex.rst

run

quit

After the minimization we can call rraman to compute the normal modes
(and frequencies) and write them out to ‘exmodes.dat’.

rraman
exc file exmodes.dat

end

C.3.10 Normal Modes for Methylamine

This example describes how to perform a normal mode calculation on an
isolated molecule. The molecule chosen is methylamine, whose 7 atoms
make it small enough for a simple example and large enough to make it
nontrivial to obtain the normal modes (although symmetry considerations
might help a lot in an analytic calculation). The normal mode calculation
is performed with the task nmodes after the molecule has been built (with
create) and its energy parameters set (with setmodel). Once the normal
modes have been determined one can request that the contribution of each
internal degree of freedom (bonds, angles, etc.) to each and every mode
be displayed (or written to the log file) with the subtask ped. This is a
very useful option since it allows for a quick determination of the localized
vibrational modes, easier to deal with than a list of (cartesian) displacements
(which is, however, also generated).

Input files
normodes.inp Main input file
mta.dat Residue topology file for methylamine
mta.pdb Coordinates file (PDB format)
mtaparam.dat Energy parameter file

Output files
normodes.out Main output file

Always tell IMPACT where to put the log information.
write file normodes.out -

title Normal Modes for Methylamine *

Before performing any computation one has to build (create) the molecule.
create
build newresidue mta file mta.dat

build primary type other name mamine mta end

Impact 4.0 Command Reference Manual 303

Appendix C: Example Input Files

read coordinates name mamine file mta.pdb

quit

Most of the time the energy model used is standard.
setmodel
setpotential

mmechanics

quit

read parm file mtaparam.dat noprint

energy parm cutoff 7.5 listupdate 5 diel 1.0 nodistance scr14 1.0

quit

Every time normal modes are calculated it is essential to perform a potential
energy minimization beforehand to make sure that the configuration used
corresponds to equilibrium.

minimize
conjugate dx0 0.005

input cntl mxcyc 2000 rmscut 0.000001 deltae 0.000001

run

quit

Now we compute the normal modes and their frequencies. The list of modes
will appear in the main output file, ‘nmodes.out’. The subtask ped requests
that a list of the percentage of potential energy in each internal degree of
freedom for each mode be written also (this is called a Potential Energy
Distribution).

nmodes
ped

end

304 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

C.4 New Techniques

C.4.1 MD Simulation with the FMM

This example illustrates how to run a simulation using the Fast Multipole
Method (FMM) in combination with the reversible Reference System Prop-
agator Algorithm (r-RESPA). A simple (and small) system of about 216
water molecules is used, and a one picosecond simulation is run. Although
the FMM is not very efficient for such a small system, in combination with
the r-RESPA integrator it yields an algorithm that is about as fast as the
usual Verlet plus cutoff method.

Input files
fmm.inp Main input file
paramstd Energy parameter file
tip4p.con Energy constraints
tip4p.eq Coordinate and velocity restart file

Output files
fmm.out Main output file

write file fmm.out -

title TIP4P Water MD *

As in the previous example, we first create a system of 216 TIP4P water
molecules.

create
build solvent name solvent1 type tip4p nmol 216 h2o

quit
setmodel

setpotential

This is how the Fast Multipole Method (FMM) is selected. The parameter
following the keyword level is the depth of the tree minus 1, and should
always be larger or equal to 2. The depth of the tree should be chosen with
two requirements in mind: (a) there is a speed and accuracy tradeoff be-
tween the depth of the tree and the number of multipoles that are needed;
and (b) as a rule of thumb, since the Lennard-Jones interactions are com-
puted together with the direct electrostatic contributions, twice the smallest
box (that is, the size of a cluster at the deepest level) should be a little
larger than the Lennard-Jones cutoff. The parameter following the keyword
maxpole gives the order of the multipolar expansion that will be used, and
it must be larger or equal to 4 (one beyond hexadecupole). The keyword
smoothing should be used if one is interested in a stable, energy-conserving

Impact 4.0 Command Reference Manual 305

Appendix C: Example Input Files

simulation and the r-RESPA integrator with a time step of more than about
3 femtoseconds is used.

mmechanics fmm level 2 maxpole 7 smoothing

quit

read parm file paramstd noprint

enrg parm cutoff 9.5 listupdate 1 diel 1.0 nodist

enrg periodic name solvent1 bx 18.6353 by 18.6353 bz 18.6353

TIP4P must be constrained, so we read the constraint file ‘tip4p.con’. Note
also that a molecular cutoff is selected for the solvent; however, when using
the FMM this is completely ignored.

enrg cons read file tip4p.con

enrg molcut name solvent1

quit
dynamics

We use this example also as a test of energy conservation, so let’s run a one
picosecond simulation at constant energy. Note that we use a large time
step: ten femtoseconds!

input cntl -

nstep 100 delt 0.01 relax 0.05 taup 0.10 seed 100 stop rotations -

constant totalenergy nprnt 10 tol 1.e-7

read restart coordinates and velocities box real8 -

external file tip4p.eq

We can use such a large time step because the FMM works nicely in concert
with the reversible RESPA integrator. Here we run the simulation updat-
ing the bonding interactions every 10/16 femtoseconds, and the short-range
nonbonded interactions (electrostatic and van der Waals) every 10/4 fem-
toseconds. The medium- and long-range are updated every step, that is,
every 10 femtoseconds. Surprisingly, perhaps, this run shows a decent level
of energy conservation. Increasing the maxpole would give, of course, a much
more stable simulation, but it would also increase the runtime.

run rrespa fast 4 medium 4

quit
end

C.4.2 Minimization using Implict Solvent (SGB)

Conjugate gradient minimization using the Surface Generalized Born Model
(Sgb) is demonstrated here for the protein crambin.

306 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

Input files
sgb.inp Main input file
paramstd Energy parameter file
sgb.param Sgb parameter file
sgb.prr.str.prm.real Sgb file
sgb.slr param Sgb file
sgb.sncorrfnprm Sgb file
sgb.sncorrfnprm.noself Sgb file
sgb.sncorrfnprm.self Sgb file
1crn.pdb Crambin Pdb file

Output files
sgb.out Main output file

The first executable block of the input file reads the Crambin pdb file to
establish the system to be minimized.

CREATE
build primary name crn type protein -

read file 1crn.pdb crosslink

read coordinates name crn file 1crn.pdb

build crosslink automatic

build types name crn

QUIT

The second executable block sets up the OPLS force field, informs the pro-
gram to use a continuum solvent model, and initializes several parameters
used in the calculation of the long-range interactions.
The ’consolv sgb’ line instructs the program to use the continuum model
based on the Surface Generalized Born Model equations (as opposed to the
Poisson-Boltzmann continuum model).

SETMODEL
setpotential

mmechanic consolv sgb

quit

read parm file paramstd.dat noprint

energy parm cutoff 12.5 -

listupdate 20 diel 1.0 nodist

QUIT

The last block performs the actual minimization and writes out the final
coordinate file.

MINM
conjugate dx0 0.1 dxm 1.0 rest 50

input cntl mxcyc 3000 rmscut .05 deltae .001

run

write pdb coordinates file crn_sgb_minimized.pdb name crn

QUIT

Impact 4.0 Command Reference Manual 307

Appendix C: Example Input Files

C.4.3 Minimization using Implict Solvent (PBF)

Conjugate gradient minimization using the Poisson-Boltzmann solver (PBF)
is demonstrated here for the protein crambin.

Input files
pbf.inp Main input file
paramstd Energy parameter file
pbf.com Pbf command file
pbf.prm Pbf parameter file
1crn.pdb Crambin Pdb file

Output files
pbf.out Main output file

The first executable block of the input file reads the Crambin PDB file to
establish the system to be minimized.

CREATE
build primary name crn type protein -

read file 1crn.pdb crosslink

read coordinates name crn file 1crn.pdb

build crosslink automatic

build types name crn

QUIT

The second executable block sets up the OPLS force field, informs the pro-
gram to use a continuum solvent model, and initializes several parameters
used in the calculation of the long-range interactions.
The consolv pbf line instructs the program to use the continuum model
based on the Poisson-Boltzmann equations (as opposed to the surface gener-
alized Born continuum model). In a typical minimization, the calculation of
the reaction-field energy and gradients by PBF are by far the most expensive
part of the minimization. To reduce the required computational effort, the
user may provide a cutoff parameter which specifies the maximum distance
any solute atom must move relative to those used in the previous PBF cal-
culation before a new PBF energy and gradient are calculated. If all atoms
have moved less than this cutoff value relative to the previous pbf calcula-
tion, then the previously calculated pbf energy and forces are used without
calling the pbf module. This protocol is based on the observation that the
reaction-field energy and gradient are both slowly-varying functions of the
atomic coordinates for proteins, and hence do not need to be updated every
minimization step to achieve reasonably accurate results. In the input file
fragment below, the cutoff is set to 0.2 Å; the default is 0.1 Å. A larger cutoff

308 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

value would, of course, reduce the required CPU time even further, but with
a loss in accuracy.
The other parameter on the consolv line is the debug flag. If the debug
value is nonzero, then PBF will print out debugging information. The default
value for the debug flag is 0 (off).
A dielectric constant of 2.0 (diel 2.0) is used here. The dielectric con-
stant value is used for both the atom-atom electrostatic interactions and
the electrostatic interactions between the atoms and the induced surface
charges calculated by pbf (the reaction-field interactions). The dielec-
tric value set here overrides the one specified in the file ‘pbf.com’ in the
‘$SCHRODINGER/impact-v4.0/opls/data’ directory. The default value is
1.0.
The only other major parameters in the files
‘$SCHRODINGER/impact-v4.0/opls/pbf.com’ and
‘$SCHRODINGER/impact-v4.0/opls/pbf.prm’ which a user might want to
modify are the solvent radius and dielectric constant (both in ‘pbf.com’ on
lines 11 and 13). The current radius is set to 1.4 Å, and the solvent dielectric
constant is set to 80.0, both are values typically used for water.

SETMODEL
setpotential

mmechanic consolv pbf cutoff 0.2 debug 0

quit

read parm file paramstd.dat noprint

energy parm cutoff 12.5 -

listupdate 20 diel 2.0 nodist

QUIT

The last block performs the actual minimization and writes out the final
coordinate file. One important point to make here is that the rmscut value
(the cutoff value for the RMS value of the gradient which is used in de-
termining when to stop the minimization) is somewhat larger than what is
often used. This is due to the fact that the gradient calculated by pbf can
be ’noisy’. Hence using a small value for the acceptable RMS gradient may
cause the program to ’bounce around’ the minimum in an effort to achieve
a unattainable goal, thereby wasting CPU time.

MINM
conjugate dx0 0.1 dxm 1.0 rest 50

input cntl mxcyc 3000 rmscut .10 deltae .001

run

write pdb coordinates file crn_minimized.pdb name crn

QUIT

C.4.4 S-Walking method with HMC

This example illustrates how to run a simulation using the Hybrid Monte
Carlo with S-Walking method. A small pentpeptide (Met-Enkaphalin) is
used for illustration.

Impact 4.0 Command Reference Manual 309

Appendix C: Example Input Files

Input files
swalk.inp Main input file
paramstd Energy parameter file
pentpep.rst Coordinate and velocity restart file

Output files
swalk.out Main output file

write file swalk.out -

title HMC with S-Walking *

create
build primary name pentpep type protein read file pentpep.pdb

read coordinates name pentpep brookhaven file pentpep.pdb

build types name pentpep

quit
setmodel

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

solute translate rotate diagonal

enrg parm cutoff 25.0 -

listupdate 100000 diel 1.0 nodist print 200

quit
minimize

input cntl mxcyc 200

steepest dx0 0.05 dxm 1.0

run

quit

S-Walking method runs two walkers in tandem, and calls a local minimizer
(steepest decent or conjugate gradient) every once a while to minimize the
high-temperature J-walker’s configuration to a local minimum. These com-
mands specify the minimization method and the number of minimization
steps. This is the same as a regular minimization process.

dynamics
input cntl nstep 100000 delt 0.0015 relax 0.01 seed 101 -

constant hmc nmdmc 5 swalk 1 minimize 1 stepgap 50000 steprec 100 -

jtemp 1000.0 nprnt 100 metric 0 tol 2.0e-7

The command ’const hmc’ selects the HMC method rather than normal
MD methods. HMC is similar to a constant temperature, constant volume
(canonical ensemble) MD simulation. Keyword ’swalk’ and ’minimize 1’ se-
lects S-Walking method. Consult description in ’Task Molecular Dynamics’
for values of ’stepgap’ and ’steprec’.

input target temperature 300.0

read restart coordinates and velocities formatted file pentpep.rst

run

310 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

write pdb brookhaven name pentpep file pentpep.pdb

quit
end

C.4.5 Liaison: Linear Response Method Simulations

This example illustrates how to perform a single Liaison Linear Response
Method (LRM) simulation for binding free energies. The method is also
called Linear Interaction Approximation (LIA). Normally a set of these cal-
culations is performed on different ligands, and their results are used to fit
parameters which are then applied on other ligands to predict their binding
energies.
The easiest way to set up Liaison simulations, fitting calculations, and bind-
ing energy predictions is through the Maestro graphical user interface; please
see the Liaison User Manual for more up-to-date information about Liaison
calculations. The directory ‘samples/liaison/’ in the installation includes
a full set of input and output files for a series of HEPT analogs binding
to HIV-RT. The directory illustrates how the files are arranged so that the
simulate, fit, and predict parts of a full Liaison simulation can interoperate.
The Liaison User Manual discusses the entire workflow; the material below
only documents the free and bound state simulations for the H01 ligand.
Two separate simulations per ligand must be run to estimate the binding
energy: ligand in pure solvent (free state), ligand in protein and solvent
complex (bound state). The binding energy can be estimated by:

∆G = α(〈U b
vdW 〉 − 〈U f

vdW 〉) + β(〈U b
elec〉 − 〈U f

elec〉) + γ(〈U b
cav〉 − 〈U f

cav〉)

Input files
H01.bound.inp Bound state input file
H01.free.inp Free state input file
H01 lig.mae Ligand coordinate file
H01 rec.mae Receptor coordinate file

Output files
H01.bound.out Bound state output file
H01.bound.log Bound state log file
H01.bound.ave Bound state averages
H01.free.out Free state output file
H01.free.log Free state log file
H01.free.ave Free state averages
H01 rec min.mae Receptor minimized structure
H01 lig min.mae Ligand minimized structure

Impact 4.0 Command Reference Manual 311

Appendix C: Example Input Files

This input file ‘H01.bound.inp’ is for the ligand in the bound state, i.e.,
ligand bound in the protein receptor in solvent. It uses a simple minimization
protocol; dynamics and HMC simulations are also available.

write file "H01.bound.out" title Binding Energy *

create
build primary name prot type auto read maestro file "H01_rec.mae"

build types name prot

build primary name drug type auto read maestro file "H01_lig.mae"

build types name drug

quit
setmodel

setpotential

mmechanics consolv sgb

quit

read parm file paramstd.dat noprint

enrg parm residue cutoff 15 -

listupdate 10 diel 1 nodist print 10

zonecons auto

quit
minimize
input cntl mxcyc 5000 rmscut 0.05 deltae 1.0e-5

conjugate dx0 0.05 dxm 1.0

run

write name prot maestro file "H01_rec_min.mae"

write name drug maestro file "H01_lig_min.mae"

quit

Run LRM (LIA) simulation. The user should specify the ligand in the LRM
simulation in order to collect interactions between ligand and its environ-
ment. The LRM ligand can be anything in the program’s point of view, or
example, it can be one ligand, or two ligands, or even a protein.

LRM
assign ligand name drug

input cntl average every 1 file "H01.bound.ave"

Choose a sampling method. This example selects Hybrid Monte Carlo (hmc)
for underlying sampling engine. The other supported sampling methods are
Molecular Dynamics and Monte Carlo.

!! Carry out 10 hmc sampling steps at 10 deg C

!! to get needed quantities needed for LIA fitting

sample hmc

input cntl mxcyc 5 nmdmc 2 delt 0.0005 -

relax 0.01 nprnt 100 seed 101

input target temperature 10.0

run rrespa fast 2

QUIT

END

312 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

The following is the input file ‘H01.free.inp’ for the ligand in the free state.
It is very similar to the above input file for the bound state, except that it
has no protein specific input commands.

write file "H01.free.out" title Binding Energy *

create
build primary name drug type auto read maestro file "H01_lig.mae"

build types name drug

quit
setmodel

setpotential

mmechanics consolv sgb

quit

read parm file paramstd.dat noprint

enrg parm residue cutoff 15 listupdate 10 diel 1 nodist print 10

quit
minimize
input cntl mxcyc 5000 rmscut 1.000000e-02 deltae 1.000000e-05

conjugate dx0 5.000000e-02 dxm 1.000000e+00

run

quit

lrm
assign ligand name drug

input cntl average every 10 file "H01.free.ave"

sample hmc

input cntl mxcyc 10 nmdmc 5 delt 0.0005 -

relax 0.01 nprnt 100 seed 101 -

constant temperature

input target temperature 10.0

run rrespa fast 2

quit
end

C.4.6 QSite: QM-MM Simulations

This section illustrates how to use QSite to do a QM-MM dynamics and
geometry optimizations. See the QSite section in SETMODEL task for QSite
related commands.
The easiest way to set up QSite simulations is through the Maestro graphical
interface; please see the QSite User Manual for more up-to-date information
about QSite simulations than is described here.

Input files
qmmm-impact.inp Impact input file
qmmm-jaguar.in Jaguar input file
leu.mae Input structure

Impact 4.0 Command Reference Manual 313

Appendix C: Example Input Files

Output files
qmmm.out Impact output file
qmmm-jaguar.out Jaguar output file
leu out.mae Final structure file

This example is a geometry optimization of a capped dipeptide, where the
central leucine sidechain is the QM region, and is treated at the B3LYP/6-
31G* level.

*** Jaguar input

&gen

mmqm=1

basis=6-31G*

idft=22111

igeopt=1

$

*** Impact input

write file qmmm.out -

title QMMM Energy on Leu Dipeptide Side Chain *

create
build primary name dipep type auto -

read maestro file leu.mae

build types name dipep

quit

setmodel
setpotential

mmechanics

quit

read parm file paramstd.dat noprint

energy parm cutoff 20.0 listupdate 100 diel 1.0 nodist

qmregion residue name dipep resn 2 molid 1 cutb 3

quit

minimize
conjugate dx0 5.000000e-02 dxm 1.000000e+00

input cntl mxcyc 1000 deltae 0.5

run

write maestro file "leu_out.mae"

quit

end

314 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

Input files
bind.inp Main input file
paramstd.dat Energy parameter file
prot.pdb Coordinate file
lig.pdb Coordinate file

Output files
bind.out Main output file

This example consists of a quantum ligand in a protein with three quantum
side chains.

*** Jaguar input

&gen

mmqm=1

basis=6-31G*

igeopt=1

$

*** IMPACT input

write file ligand+prot

title QM-MM binding calc *

create
build primary name prot type protein mole pro read file cmpx_prot_min.pdb

build primary name prot type ligand mole lig read file cmpx_lig_min.pdb

read coordinates name prot mole pro brookhaven file cmpx_prot_min.pdb

read coordinates name prot mole lig brookhaven file cmpx_lig_min.pdb

quit
setmodel

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

enrg parm cutoff 99.0 -

listupdate 10000 diel 1.0 nodist print 10

qmregion residue name prot mole lig all

qmregion residue name prot mole pro resn 23 cutb 3

qmregion residue name prot mole pro resn 43 cutb 3

qmregion residue name prot mole pro resn 47 cutb 3

quit
minm
conjugate dx0 0.05 dxm 3.0

input cntl mxcyc 10000 rmscut deltae 0.5

run

quit
end

Impact 4.0 Command Reference Manual 315

Appendix C: Example Input Files

This example is a p450 heme system. Atom 44 is an oxygen atom bound to
the heme, residue 417 is a camphor ligand, residue 420 is the heme group,
and residue 357 with a QM/MM cut is a cysteine coordinated to the heme.

write file "p450.out" -

title "p450 + camphor" *

create
build primary name species1 type auto read maestro file "feo.mae"

build types name species1

quit

setmodel
setpotential

mmechanics

quit

read parm file -

"paramstd.dat" -

noprint

energy parm dielectric 1 nodist -

listupdate 10000000 -

cutoff 100000

qmregion atom name species1 atom 44

qmregion residue name species1 resn 417 chain A molid 1

qmregion residue name species1 resn 420 chain A molid 2

qmregion residue name species1 resn 357 chain A molid 1 cutb 3

quit

minm
conjugate dx0 5.000000e-02 dxm 1.000000e+00

input cntl mxcyc 1000 deltae 0.5

run

write maestro file -

"feo1dzp_out.mae"

quit

end

C.4.7 Polarizable Force Field Test

This example illustrates the usage of the polarizable force filed (PFF). It will
run a minimization in fixed charge force field first (OPLS-AA), then run a
minimization and a dynamics in polarizable force field.

Input files
pff.inp Main input file
parampff.dat Parameter file
1crn.pdb PDB coordinate file

316 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

Output files
pff.out Main output file

set FFIELD opls2000

Polarizable force field (PFF) only works with opls2000.
write file pff.out title pff test *

create
build primary name pfftest type protein read file 1crn.pdb

read coordinates name pfftest brookhaven file 1crn.pdb

build types name pfftest

quit
! minimize in fixed charge force field first

setmodel
setpotential

mmechanics

quit

read parm file paramstd.dat noprint

energy parm cutoff 100.0 listupdate 10 diel 1.0 nodist

quit
minm
conjugate dx0 0.05 dxm 1.0 rest 50

input cntl mxcyc 500 rmscut 5.0e-2 deltae 1.0e-5

run

quit
! minimize in polarizable force field

setmodel
setpotential

mmechanics pff

Turn on PFF by simply say "mmechanics pff".
quit

read parm file parampff.dat noprint

energy parm cutoff 100.0 listupdate 10 diel 1.0 nodist

quit
minm
conjugate dx0 0.05 dxm 1.0 rest 50

input cntl mxcyc 1000 rmscut 5.0e-2 deltae 1.0e-5

run

write pdb brookhaven name pfftest file prot_min.pdb

quit

Run 1000 steps of conjugate gradient minimization in PFF.
! dynamics in polarizable force field

dynamics
input cntl -

nstep 1000 delt 0.001 relax 0.1 seed 100 -

initialize temperature at 10.0 constant temperature -

nprnt 10 tol 1.e-7

input target temperature 298.0

run

Impact 4.0 Command Reference Manual 317

Appendix C: Example Input Files

write pdb brookhaven name pfftest file prot_dyn.pdb

quit

Run 1000 steps of constant temperature dynamics in PFF.
end

C.4.8 Glide Example

This example runs the Glide docking module on ten conformations of the
ligand from a thrombin complex, PDB code 1ETS. It uses the greedy scoring
and pose refinement features of Glide, and a distance-dependent dielectric
of 4r in energy calculations.
Caution: Glide has evolved quite significantly since this example was cre-
ated. Please see the Glide Quick Start Guide, Glide User Manual, and Glide
Technical Notes for up-to-date documentation on Glide.
The easiest way to set up Glide simulations is through the Maestro graphical
interface. Using the Maestro interface has the added benefit of automati-
cally setting up many simulation parameters to Schrödinger’s recommended
values.

Input files
1ets4r.inp Main input file
1etsligref.pdb Initial ligand coordinate file
1ets30a.grd Adaptive grid structure file
1ets30a*.fld Energy grid files
1ets30a*.save Rough-score grid files
1ets30a.site Ligand site file
1etslig[1-9].pdb conformer coordinates

Output files
1ets4r.out Main output file

write file 1ets4r.out title Docking inhibitor to 1ETS *

create
build primary name drug type auto read pdb file 1etsligref.pdb

build types name drug

quit

The first dock task sets up the calculation. We will read the Lennard-Jones
energy grid from files ‘1ets30a_vdw.fld’, and rdiel indicates reading the
coulomb grid with the distance-dependent dielectric, ‘1ets30a_coul2.fld’.
The smooth anneal 1 command indicates that we read only the energy
grids in these files that incorporate short-distance smoothing. We will
read the normal rough-scoring grid from ‘1ets30a.save’, the greedy grid

318 Impact 4.0 Command Reference Manual

Appendix C: Example Input Files

from ‘1ets30a_greedy.save’, and site information from ‘1ets30a.site’.
Throughout the rough-score screening, we will keep a maximum of 200 poses,
from a maximum of 10 conformations. The cutoff for the subset score is
-60.0. We do not run screening in this task, we only set up the grids.

dock
smooth anneal 1

receptor readf 1ets30a rdiel

ligand name drug

screen -

readscreen 1ets30a.save -

readcmsite 1ets30a.site -

greedy readgreed 1ets30a_greedy.save -

maxkeep 200 subsc -60.0

parameter setup save maxconf 10

run

quit

Run the rough-score screening algorithm on the current ligand conformation
(‘1etsligref.pdb’), and mark it as the reference conformation. Save the
grids, and results, for subsequent accumulation.

dock
ligand reference name drug

parameter save

screen

run

quit

Loop on the index ’i’, from 1 to 9.
put 1 into ’i’

while ’i’ le 9

Construct the name of the ligand file for conformation ’i’: 1etslig’i’.pdb.
put $1etslig$ concat (char ’i’) concat $.pdb$ into ’filename’

Read in the next conformation, but don’t run atomtyping on it (noat),
because we assume all of these files contain the same atoms in the same
order.

create
read coordinates noat brookhaven name drug file ’filename’

quit

Run screening on this conformation.
dock
ligand name drug

parameter save

screen

run

quit

Increment the loop index.
put ’i’ + 1 into ’i’

endwhile

Impact 4.0 Command Reference Manual 319

Appendix C: Example Input Files

Run the refinement step and energy minimization, without reading in or
screening a new ligand conformation. Refinement will pass at most 20 poses
to energy minimization. The smooth anneal 1 command here indicates that
we run the minimization only on the smoothed energy surface, rather than
"annealing in" the hard-core (infinite at zero distance) potentials. Energy
minimization will use a dielectric coefficient of 4.0, which combined with
rdiel above implies a distance-dependent dielectric of 4r.

dock
smooth anneal 1

parameter clean

ligand keep

screen noscore refine maxref 20

minimize dielco 4.0

run

quit
end

320 Impact 4.0 Command Reference Manual

Function Index

Function Index

(
() . 8

-
-1 . 119
-2 . 119

[
[] . 8

1
1 . 119
1d . 160

2
2 . 119
2d . 160

A
accuracy . 54
active . 134
active_reg_incr . 53
actives [maestro | sd] afile fname

. 142, 143
actxr . 134
actyr . 134
actzr . 134
adf . 168
ADNA . 29
agbnp . 48
all . 42, 159
alldist . 196
allinternals . 156
allprint . 142
alltorsions . 83
alpha . 43
AMBER86 . 17
amideoff . 136
analysis . 153
angle . 156
anneal . 128
annotation . 227

arrays . 188
as empty . 174
as value . 174
assign ligand . 93
atna . 158
atname . 9
atom . 160, 162
automatic . 27, 228
avcf . 170
axes . 227

B
baddist . 140
basis . 66
bbone . 83
BDNA . 29
best . 150
between . 154
binding energy . 244
bindipole . 180
binenergy . 181
binsolvent . 178, 179
bond . 38, 156, 169
bone . 159
bound waters . 35
box 107, 108, 134, 145
boxsize . 162
boxxr . 134
boxyr . 134
boxzr . 134
bsize . 133
buffer . 135
buffer_reg_size . 54
build . 19
build crosslink . 27
build crosslink automatic 27
build newresidue 27
build primary . 19
build primary check 119
build primary DNA 21
build primary DNAA 21
build primary DNAB 21
build primary DNAZ 21
build primary ions 26
build primary other 20
build primary protein 20

Impact 4.0 Command Reference Manual 321

Function Index

build primary RNA 21
build primary type auto 24
build secondary 28, 29
build solvent . 29
build types . 30
bx,by,bz . 56
by . 56, 191
by energy . 148
by glidescore 112, 148
by name . 154
byspecies . 79, 87
bz . 56

C
calc . 156
call . 197
calpha . 28
cavity_cutoff . 47
ccharacter . 228
cdiel . 130
center . 179
center read . 134
char . 195
charge . 177
check . 24
chgcut . 162
chi . 160
clean . 139
close . 167
cmae . 25
cminit . 137
cminit lig . 138
cminit zero . 138
cntl. 79, 87
collect . 150
compare . 159
concat . 195
confgen . 114, 140
conjugate . 73
consatom . 124, 131
consname . 131
consolv [sgb] . 44
consolv agbnp . 48
consolv pbf . 46
consolv pbf npsolv 50
consolv sgb . 44
constitle . 131
constraints 38, 52, 124, 130
contour . 228
convert . 82, 89

coordinates . 33, 35
copy . 174
corescale . 141
create . 19, 174
crosslink . 27
csoft . 128
current . 150
curve . 228
cutl . 157, 158
cutoff 40, 45, 47, 56, 149, 161
cutu . 157, 158
cwall, csoft . 128
cycgap . 88
cycrec . 88

D
debug . 45, 47
delay . 84, 227
Delete H atom . 32
delpose . 112, 150
delt. 80, 87
deltae . 74
density . 54, 80
DICE . 183
dielco . 113, 146
dielectric . 41
distance 41, 196, 228
DNA . 21
DNAA . 21
DNAB . 21
DNAZ . 21
dock . 99
DOCK . 99
dock_grid_size . 53
docking . 99
dvdp . 80
dw . 166
dx0 . 73
dxm . 73
dxm/ . 73
dynamics . 75, 79, 170

E
echooff . 9, 153
echoon . 9, 153
ecut . 119, 140
ecvdw . 113
electrostatic . 161
electrostatics . 56

322 Impact 4.0 Command Reference Manual

Function Index

elow . 166
else . 197
empty . 174
encut . 154
endif . 197
ENDWHILE . 121
energy . 37, 153
epot . 163
epsout . 54
eq . 194
eup . 166
every . 78, 94, 166
ewald . 43, 255
external . 77
external file . 149

F
fast . 81, 89, 289
featurefile . 131
featverb . 132
field1 . 227
field2 . 227
file 9, 38, 84, 94, 157, 161, 167
final . 108, 147, 161
finalonly . 132
finish . 180
flex . 114, 146
fmm . 43, 306
fobo. 26, 31
force . 42
formatted . 77
forspecies . 79, 87
fos . 26, 31
framed . 228
freq . 84
fres . 83
fresidue . 9
ftol . 146
functions . 191

G
ge . 194
gen . 157
gen file . 157
Glide . 99
GLIDE . 99
goto . 197
GOTO ABORT . 120
GOTO BREAK . 120

gotostruct . 25
gotostruct ’startlig’ 120
grdist . 196
greedy . 101, 107, 145
grid . 161, 179
grid_size . 53
group . 75, 82, 84, 89
grwr . 163
gt . 194

H
h2o . 30
hand rev . 159
hbcutoff . 40
hbfilt . 113
hbond . 157, 167
hbpenal . 113
helix . 28
high_res . 47
highacc . 147
higher . 154
highest . 154
histogram . 195
HMC . 86
hspc . 217
hydrogen_radius . 54

I
i . 28
iatom . 168
ic . 33
if . 197
IF ’buildcheck’ LT 0 119, 120
ifo . 26, 31
ii . 29
iip . 29
Impact output of Glide 151
inactives [maestro | sd] ifile fname

. 142
include . 162
incr . 161
individual 75, 82, 84, 89
init . 137
init rand [cmrange val] [thetarange

val] [phirange val] [psirange

val] [seed num] 137
init read xcm val ycm val zcm val phi

val theta val psi val 137
init zero . 137

Impact 4.0 Command Reference Manual 323

Function Index

initial . 161
initialize . 180
input . 79, 87, 165
input cntl . 94
intermolecular . 51
internal . 33
intramolecular . 51
ip . 29
itmax . 113

J
jrate . 88
jtemp . 88
jwalk . 88

K
keep . 54, 136, 150
key . 228
keywords . 8
kmax . 43

L
landscape . 227
large . 227
lcut . 157
le . 194
level . 43, 306
level2d . 228
level3d . 228
lewis . 26, 31
lhelix . 28
LIA . 91, 311
ligand . 22, 110, 136
ligand keep . 113
ligand name lig . 112
lineprint . 227
lists . 184, 198
listupdate . 41
loosedock . 132
loosegrid . 132
low_res . 47
lres . 83
lresidue . 9
LRM . 91
lstdist . 196
lt . 194

M
maestro . 25
main . 160
make . 163
matrix . 180
maxconf . 139
maxcore . 140
maxhard . 147
maxit . 73
maxiter . 39
maxkeep . 111, 144
maxperlig . 112, 149
maxpole . 43, 306
maxref . 113
maxsoft . 147
mdanalysis . 165
measure . 155
med_res . 47
medium . 81, 89
metalbind [DEPRECATED] 133
metalfilt . 113
metric . 88
min_grid_size . 53
mini-tasks . 172
minimize 75, 102, 113, 146
minprint . 83
minstep . 88
minus . 157, 158
mixture . 54
mmechanics. 42, 255, 306
model . 175
molcutoff . 37
mole . 24, 130, 136
monitor . 156
montecarlo . 75, 83
msd . 170
msteps . 167
multiple . 136
mxcyc . 74, 87

N
name 9, 24, 130, 136, 161
name lig . 119
name recep . 105
ncon . 53
ncons . 124, 130
ncycle val . 147
nehb . 166
neighbor . 158

324 Impact 4.0 Command Reference Manual

Function Index

new . 55, 138
newresidue . 27
nextstruct . 25, 120
nfill [DEPRECATED] 133
nfull . 74
ngrida . 166
ngride . 166
ngridr . 166
ngridt . 166
nhscale . 74
nice . 228
nlev . 134
nmdmc . 87
nmodes . 172
no14 . 42
noangle . 42
noatom . 175
nobond . 42
nobonds . 169
nobox . 166
nodistance . 41
NOE . 157
noecons . 42
noel . 43
noel14 . 42
noelec . 138
noforce . 42
nohb . 43
nokey . 228
noprint . 143, 160
norecep . 149
noresidue . 175
noringconf . 141
norot . 138
noscore . 113, 144
nospecies . 175
notail . 42
notestff . 26
notors . 42
novdw . 43
nphobic num file fname 130
nposit . 131
nprnt . 80, 87
npsolv . 45
nreport . 112, 149
nsec . 53, 135
nseg . 83, 159
nskip . 156
nstep . 80
nusecons [DEPRECATED] 133
nusephob [DEPRECATED] 133

O
of name . 154
old . 56
one . 154
oopl . 169
operations . 191
OPLS . 17
OPLS-AA . 30
OPLS2000 . 17
OPLS2001 . 17
OPLS2003 . 17
ospc . 217
other . 20
outcutoff . 41
outlistupdate . 41
output . 159
overlap . 55

P
param (Liaison) . 94
parameter 108, 111, 139
parameter clean final 114
params . 83
parm . 40
patype . 32
pbf . 46
pbfevery . 47
pdb . 25, 157, 158
pdb1 . 158
pdb2 . 159
penalty val lowsim val highsim val

. 143
percent val . 142
periodic . 37
pff . 50
phi . 228
place . 56
pladf . 170
plavcf . 170
plbed . 168
plewis . 32
plot . 75, 175, 227
Plot . 175
plrdf . 168
plspectrum . 170
plus . 157, 158
plvcf . 170
point . 228
portrait . 227

Impact 4.0 Command Reference Manual 325

Function Index

postscript . 227
potfield . 161
pparam . 32
primary . 19, 20, 21
print . 32, 41, 42, 174
print coordinates 33
print ic . 33
print none . 159
print structure . 33
print tree . 32
printe . 53
printf . 53
printoptions . 174
prokiral . 157
protein . 20
protvdwscale . 106
put . 190
PUT ’i’ + 1 INTO ’i’ 121
PUT ’startlig’ INTO ’i’ 120

Q
QMMM . 60, 155
qmregion . 60
qmtransition . 68

R
rand . 195
random . 28
range . 53
RATTLE . 81, 87
rdf . 167
rdiel . 130
read . . 33, 38, 41, 75, 82, 85, 89, 159, 162,

176
read coordinates 35
read internal . 33
read xyz . 33
readf . 129
readgreed . 111, 145
readscreen . 111, 144
readsurface . 135
recep . 149
receptor 105, 110, 129
reference . 137, 150
refine . 102, 113, 146
reject val . 143
relax . 80, 87
report . 111, 148
report ... write filename 114

report collect . 113
res . 160
res-res . 154
rescutoff . 37
reset . 176
resn . 21, 158
resnumber . 9, 21
resonance raman 172
rest . 73
restart . 85
restcoef . 131
restexp . 131
restore . 177, 195
result . 167
results file . 156
return . 197
rlow . 166
rms . 158
rmscut . 74
rmspose . 112, 150
RNA . 21
rotate . 162, 179
rotate matrix . 180
rotations . 81, 88
rpos . 131
rprobe . 159
rraman . 172
rrespa 81, 89, 277, 289
rsep . 158
run 75, 81, 84, 89, 108, 151, 163, 168,

170, 180
rup . 166

S
same . 159
sample . 83, 94
sampling . 147
save . 84, 139
scale . 180
scbsize . 144
schain . 83
scharacter . 228
scientific . 227
scorecut . 111, 144
scoring . 113, 147
scr14 . 40
screen 100, 107, 111, 112, 113, 144
scut . 134
scutoff . 154
sd . 25

326 Impact 4.0 Command Reference Manual

Function Index

secondary . 28
seed . 80, 84, 87
set . 17
Set ffield . 17
Set force . 17
Set Noinvalidate 18
set path . 17
setmodel . 37
setpotential . 42
setup . 112, 139, 148
sgb . 44
sgbp . 53
SHAKE . 81, 87
sheet . 28
sidechain 28, 29, 156
simil . 141
singlep . 122
size . 84
skipb n . 144
small . 227
smooth . 105, 127, 195
smooth anneal 2 . 113
smoothing . 43, 306
solute . 54, 55, 171
solvent 29, 54, 55, 170
spawn . 198
spc . 29, 30
sqdelr . 171
starttrack . 176
static . 167
statistics 81, 88, 157
statistics off 81, 88
statistics on 81, 88
stdrot . 138
steepest . 73
step . 84
stop. 81, 88
stop rotations 81, 88
stoptrack . 176
structure . 33
superimpose 75, 82, 84, 89
surface . 159, 228
swalk . 88

T
table . 174
tabular 227, 274, 277, 290, 296
tagged . 25
tail . 42
target . 81, 88

taup . 80
temp . 84
testff . 26
theta . 228
tip4p . 30, 255, 305
tips . 30
title . 227
tncut . 74
tnewton . 74
tol . 81, 87
tor1 . 160
tor2 . 160
tormap . 160
torsion . 28, 156
tphi . 53
tpsi . 53
traj . 176
trajectory . 165
tree . 32
turn . 28
type . 51, 83, 160
Types . 30

U
ucut . 157
unformatted . 77
usecons [DEPRECATED] 133
usephob [DEPRECATED] 133
user . 28

V
value . 174
variables . 8
vcf . 170
velocities . 166
velocity . 177
verbose . 6
verbosity . 139
verlet . 81, 89
violation . 161
vmax . 228
vmin . 228
vsoft . 128

W
weight constraints 52
weight intermolecular 51
weight intramolecular 51

Impact 4.0 Command Reference Manual 327

Function Index

wfile fname 142, 143
while . 196
WHILE (’endlig’ LT 1 OR ’i’ LE

’endlig’) . 120
with . 190
withonly . 190
without . 190
wradf . 170
wravcf . 170
wrbed . 168
wrhbd . 168
write 75, 82, 85, 89, 175
write filename fname 150
write template. 76
writecdie . 130
writecmsite . 145
writef . 129
writef 1ets_single_grid 106
writegreed . 108, 145
writerdie . 130
writescreen 108, 144
writesurface . 135
wrrdf . 168
wrspectrum . 170

wrvcf . 170

X
xfield . 163
xl, yl, zl . 180
xlabel . 227
xori, yori, zori 180
xpos . 131
xstep, ystep, zstep 180
xyz . 33, 177

Y
yfield . 163
ylabel . 227
ypos . 131

Z
ZDNA . 29
zfield . 163
zonecons . 56
zpos . 131

328 Impact 4.0 Command Reference Manual

Concept Index

Concept Index

A
A-DNA, specifying the secondary

structure of . 29
Active site . 129
Adaptive grid . 129
Adding (counter)ions to a molecular

species . 26
Adding long-range corrections 42
Advanced Scripts 196
AGBNP implicit solvent model 48
Analysis of solvent auto correlation. . . 170
Analysis of trajectory files 165
Analysis task . 153
Analysis, measure 155
Analyze dynamic properties 167, 170
Analyze structure and energy 153
Angular distribution function 168
Arithmetic operations 191
Atom Types, automatic generation of

atom types . 30
Atom types, printing 32
Atoms, specifying . 9
Authors of Impact . 1
Auto correlation, solvent 170
Automatically creating crosslinks from a

PDB file . 27

B
B-DNA, specifying the secondary

structure of . 29
Background in Impact 183
binding energy. 244
Binding energy prediction, Liaison 97
Binning routines . 179
Bond constraints . 38
Bond distance . 196
Boolean operators 194
bound waters . 35
Buffering atoms/regions 56
Building a new residue 27
Building a new residue, from PDB file

. 27
Building crosslinks 27
Building the molecular structure of DNA

. 21

Building the molecular structure of
proteins . 20

Building the molecular structure of RNA
. 21

Building the molecular structure of the
solvent . 29

Building the primary structure 19
Building the secondary structure of a

protein or DNA molecule 28
Building the simulation system 19
By, function mapping 191

C
Calculate internal coordinates 156
Calculate solvent accessible surface . . . 159
Calling subroutines 197
Cartesian coordinates, reading from a

PDB file . 35
Cartesian coordinates, reading from the

input file . 33
Collecting statistics 81, 88
Colon notation . 188
Command language 183
Comments in the input file 7
Communication between docking and

other tasks . 148
Conformation generation for docking

. 140
Conjugate gradient. 73
Constant energy simulations 80
Constant pressure simulations 42, 80
Constant temperature simulations 80
Constant volume simulations 80
Constraint regions 56
Constraints . 81, 87
Constraints, bonds or distances 38
Constraints, distance and torsional 52
Constraints, Glide 124, 130
Constructs, programming 196
continuum solvent models 44, 46, 48
Converting trajectories between the old

and the new formats. 82, 89
Coordinates, changing the internal 33
Coordinates, printing the cartesian 33
Coordinates, reading and writing 75
Coordinates, reading from a PDB file . . 35

Impact 4.0 Command Reference Manual 329

Concept Index

Coordinates, reading from the input file
. 33

Coordinates, reading internal or cartesian
. 33

Coulomb-vdW interaction energy, Glide
. 102, 146

Counterions, adding to a system 26
Create task . 19
Creating lists . 174
Creating new molecular types (residues)

. 27
Creating solvent . 55
Creating tables . 174
Crosslinking . 27
Crosslinks, automatically creation of . . 27
Crosslinks, forcing 27
Cutoff, molecular . 37
Cutoff, residue-based 37
Cutoffs . 40
Cutoffs, read . 40

D
Data directories . 17
Data representation 77
Data structures, lists 184
Data Visualizer . 178
Database . 217
Decision making . 197
Defining the model potential 42
Delete H atom . 32
Dependencies, machine 77
DICE . 183
Dielectric constant 41
Disposition of arrays 139
Distance constraints 38, 52
Distance, bond . 196
Distance-dependent dielectric 41
Distances between atoms in “close

contact”, print 158
Distances between sets of points 196
Distances in H-bonds, print 157
DNA, building the molecular structure of

. 21
DNA, specifying the secondary structure

(A, B, Z) . 28
DNA, specifying the secondary structure

of . 29
DOCK task . 99
Docking a single conformation 109
Docking grid setup 103

Docking multiple ligands 114
Docking task . 99
Docking, communication with other tasks

. 148
Docking, conformation generation for

. 140
Docking, output of 151
Docking, reporting results of 148
Docking, running the calculation 151
Docking, similarity scoring for 141
Docking, smoothing functions for 127
Docking, specifying minimization phase of

. 146
Docking, specifying parameters for . . . 139
Docking, specifying screening phase of

. 144
Docking, specifying the ligand for 136
Docking, specifying the receptor for . . 129
Documentation, online 16
Dynamic, analyze dynamic properties in

mdanalysis . 170
Dynamics task . 79
Dynamics, input control parameters . . . 79
Dynamics, read . 82
Dynamics, run . 81
Dynamics, write . 82

E
Electrostatic potential 161
Energies, printing the 41
Energy parameters, reading 37
Energy, analyze . 153
Ewald summation 43, 255
Examining skipped rough-score sites

. 102, 146

F
Fast Multipole Method 40, 42, 43, 306
Files, open and close data files 167
Files, specifying . 9
Filters and parameters for Glide scoring

function . 147
Find root-mean-square deviation between

two conformations 158
Flexible docking . 114
Flow control . 196
FMM . 40, 42, 43
Force field . 17
Force field terms, printing 32

330 Impact 4.0 Command Reference Manual

Concept Index

Force field, setting 17
Forcing crosslinks between two residues

. 27
Freezing atoms/regions 56
Function mapping 191
Functions in Impact 191
Functions, applying over lists 191

G
Generalized Born solvent model 44
Glide constraints 124, 130
Glide energy minimization 102, 146
Glide greedy scoring 101, 145
Glide pose refinement 102, 146
Glide pose screening 100, 144
Glide rough scoring 100, 144
Glide, communication with other tasks

. 148
Glide, conformation generation for . . . 140
Glide, extra precision 147
Glide, final scoring 147
Glide, flexible docking 114
Glide, grid setup for 103
Glide, ligand recycling 147
Glide, multiple ligands 114
Glide, output of . 151
Glide, penalizing amide rotations 136
Glide, reporting results of 148
Glide, requiring specific interactions

. 124, 130
Glide, rigid docking 109
Glide, running the calculation 151
Glide, scoring input structure(s) 122
Glide, similarity scoring for 141
Glide, single ligand 109
Glide, smoothing functions for 127
Glide, specifying minimization phase of

. 146
Glide, specifying parameters for 139
Glide, specifying screening phase of . . 144
Glide, specifying the ligand for 136
Glide, specifying the receptor for 129
Glide, turning off amide rotations 136
GlideScore . 147
Goto, transfer of control 197
Greedy scoring, Glide 101, 145
Grid box . 129
Grid energy minimization, Glide 102,

146
Grid setup for Glide 103

H
Helix, creating the secondary structure for

a . 28
HMC task . 86
HMC, input control parameters 87
HMC, read . 89
HMC, run . 89
HMC, write . 89
Hybrid Monte Carlo Method. 310
Hybrid Monte Carlo, HMC 86
Hyphen notation . 189

I
if/else/endif . 197
Impact Background 183
Information about the molecular structure

. 32, 33
Initial array sizes 139
Initial pose . 136
Input control parameters for dynamics

. 79
Input control parameters for HMC 87
Input files, reading . 5
Input scripting language 183
Input, trajectory files 165
installation . 3
Integrator, multiple-time step 81, 89
Integrator, r-RESPA 81, 89
Integrator, Verlet 81, 89
Internal coordinates, calculate 156
Internal coordinates, changing the 33
Internal coordinates, measure 155
Internal coordinates, monitor 156
Internal coordinates, printing the 33
Internal lists . 185
Ions, adding to a molecular species 26

J
J-Walking . 86

L
Left-handed helix, creating the secondary

structure for . 28
Lewis structure checking/refinement . . 26,

31
Liaison . 91, 311

Impact 4.0 Command Reference Manual 331

Concept Index

Liaison, assigning ligand 93
Liaison, binding energy prediction 97
Liaison, fitting . 95
Liaison, general overview 91
Liaison, input control parameters 94
Liaison, parameters 94
Liaison, prediction 97
Liaison, selecting sampling method 94
Liaison, simulation 95
ligand template . 22
Ligand-receptor docking 99
Linear Interaction Approximation (LIA)

. 91
Linear Response Method (LRM) 91
List operators . 195
List selection . 190
List subsets . 187, 190
List, plot . 175
List, print . 174
List, read . 176
List, write . 175
Lists as data structures 184
Lists as parameters 198
Lists, creating 174, 190
Lists, internal . 185
Looping over trajectory files 176
LRM . 311

M
Machine dependencies 77
Maestro files, writing 76
Maestro properties, retaining 18
Mapping of functions over lists 191
Math functions . 191
Max/min distance between sets of points

. 196
Mdanalysis task . 165
Measure internal coordinates 155
Minimization, beginning 75
Minimization, conjugate gradient 73
Minimization, output frequency 73
Minimization, steepest descent 73
Minimization, truncated Newton 74
Molecular cutoff . 37
Molecular mechanics potential function

. 42
Molecular structure, printing the . . 32, 33
Molecular structure, specifying the 19
Molecules, creating new types of 27
Monitor internal coordinates 156

Monte Carlo parameters, set 83
Monte Carlo run . 84
Monte Carlo, restart 85
Monte Carlo, save. 84
Montecarlo task . 83
Multiple-time step integrators 81, 89

N
Naming atoms in commands 9
Naming files in commands 9
Naming residues in commands 9
Naming species in commands 9
New residue, building a 27
Nmodes task, print frequencies and

normal modes 172
NOE . 42
NOE constraints, analysis 157
NOE constraints, flag to add NOE

constraint term to potential function.
. 42

Nonbonded interactions 41
Nonbonded list update, read 40
Nonbonded list, outer 41
Nonbonded list, updating the 41
Notation, colon . 188
Notation, hyphen 189
Notation, underscore 187
Nuclear Overhauser Effect 42, 157

O
Operations on data 191
Outer neighbor list 41
Output of docking task 151
Overview of Impact 1

P
Parameters, dynamics 79
Parameters, HMC 87
Parameters, Monte Carlo 83
Parameters, read. 40
Parameters, setting 37
PDB file, printing . 33
PDB file, reading . 35
PDB files, reading and writing 75
Periodic boundary conditions 37
PFF . 50

332 Impact 4.0 Command Reference Manual

Concept Index

Placing the solvent dipoles into bins for
visualization 180

Placing the solvent energy into bins for
visualization 181

Placing the solvent molecule density into
bins for visualization 179

Plot energy contour map for dihedral
angles . 160

Plot list . 175
Plotting lists . 227
Poisson-Boltzmann solvent model 46
Polarizable force field 50
Pose refinement, Glide 102, 146
Potential energy function 153
Potential, defining the model 42
Potential, electrostatic 43, 161
Potential, Ewald summation 43
Potential, Fast Multipole Method 43
Potential, long-range 43
Potential, molecular mechanics 42
Potential, no truncation 43
Potential, type harmonic or morse 51
Prediction, Liaison 97
Primary structure, building the 19
Print list . 174
Print table . 174
Printing atom types 32
Printing force field terms 32
Printing structural information 32, 33
Printing the cartesian coordinates 33
Printing the energy terms 41
Printing the internal coordinates 33
Printing the tree structure 32
Programming statements 196
Protein Data Bank 75
Protein Data Bank file, printing a 33
Protein Data Bank file, reading a 35
Proteins, building the molecular structure

of . 20
Proteins, specifying the secondary

structure . 28

Q
QMMM . 60
QMMM, single point energy of QMMM

. 155
QMregion . 60
QSite . 60
QSite, transition state optimizations. . . 68
Quit, tasks that don’t use 172

R
r-RESPA 81, 89, 277, 289, 306
Radial distribution function 167
Ramachandran plots 160
Random numbers 195
Random-coil, creating the secondary

structure of a. 28
Read dynamics . 82
Read HMC . 89
Read list from a file 176
Read parameters . 40
Reading and writing the coordinates (and

velocities) . 75
Reading cartesian coordinates from a PDB

file . 35
Reading cartesian coordinates from the

input file . 33
Reading coordinates (internal or

cartesian) . 33
Reading energy parameters from a file

. 41
Reading input files . 5
Reading machine-independent trajectory

files . 77
Reading structure files 24
Reading the model energy parameters

. 37
Reading trajectory files 165
Regions, constraining 56
Relational operators 194
Removing excess solvent 54
Reporting results of docking 148
Requiring specific interactions in Glide

. 124, 130
Residue database 217
Residue Template File, writing 76
Residue, building a new 27
Residue-based cutoff 37
Residues, creating new 27
Residues, specifying 9
Resonance Raman, rraman 172
Restart a Monte Carlo run 85
Restart files, reading and writing 75
Returning from subroutines 197
Reversible RESPA 43, 81, 89
Rigid docking . 109
RNA, building the molecular structure of

. 21
Root-mean-square deviation, find 158
Rotating the sidechains 28

Impact 4.0 Command Reference Manual 333

Concept Index

Rough scoring, Glide 100, 144
Rough-score improvements 101
Rraman task . 172
Rraman, resonance raman 172
run Impact . 3
Run, dynamics . 81
Run, HMC . 89
Run, Monte Carlo 84
Running shell processes 198
Running the docking calculation 151
Running the MD simulation 81, 89

S
S-Walking . 86, 310
Sample torsions, Monte Carlo 83
sampling method for Liaison 94
Save a Monte Carlo run 84
Saving a snapshot of the system 75
SCHRODINGER envirionment variable . . . 211
Score in Place . 122
Scripting language 183
Secondary structure (lack of) of a

random-coil . 28
Secondary structure of a α-helix 28
Secondary structure of a β-sheet 28
Secondary structure of a left-handed helix

. 28
Secondary structure of a turn 28
Secondary structure, specifying the 28
Setmodel task . 37
Setting the directory search path 17
Setting the force field 17
Setting the model parameters 37
Setup System . 17
SGB, setting parameters 53
Sheet, creating the secondary structure for

a . 28
Sidechain, specifying the torsions

(dihedral angles). 28
Similarity scoring for Glide ligands . . . 141
Simulation, specifying the system 19
Single-point scoring (Glide) 122
Smoothing functions for docking 127
Smoothing out the rough score . . 101, 145
Soaking a system . 29
Solute properties with no solvent 171
Solute, adding . 54
Solute, centering . 55
Solute, rotating . 55
Solvent accessible surface 159

Solvent auto correlation 170
Solvent, creating . 55
Solvent, removing excess 54
Solvent, specifying the molecular nature of

the . 29
SPC . 217
SPC water model . 30
Species, specifying . 9
Specifying a data directory 17
Specifying atoms by name 9
Specifying docking output 148
Specifying files by name 9
Specifying final scoring function for Glide

. 147
Specifying Glide output 148
Specifying minimization phase of docking

. 146
Specifying parameters for docking 139
Specifying residues by number 9
Specifying screening phase of docking

. 144
Specifying species by name 9
Specifying the force field 17
Specifying the ligand for docking 136
Specifying the receptor for docking . . . 129
Statements, programming 196
Static, analyze static properties in

mdanalysis . 167
Steepest descent . 73
Structure files, reading 24
Structure, analyze 153
Structure, printing the 32, 33
Structure, specifying the secondary 28
Subroutines, calling 197
Subsets of lists 187, 190
Subtasks, description 7, 17
Surface Generalized Born solvent model

. 44
Surface, solvent accessible 159
System, building the 19
System, soaking the 29

T
Table task . 174
Tables, creating . 174
Tail corrections . 42
Task analysis . 153
Task create . 19
Task docking . 99
Task dynamics . 79

334 Impact 4.0 Command Reference Manual

Concept Index

Task HMC . 86
Task LIA. 91
Task LRM . 91
Task mdanalysis . 165
Task montecarlo . 83
Task nmodes . 172
Task setmodel . 37
Task table . 174
Tasks and subtasks 7
Tasks that don’t use quit 172
Tasks, description 7, 17
Temperature, dynamics 79
Temperature, HMC 87
TIP3P water model 30
TIP4P water model 30, 255, 305
Title card . 218
Torsional constraints 52
Torsions, sample by Monte Carlo 83
Trajectories, convert between the old and

the new formats 82, 89
Trajectories, reading and writing 75
Trajectory file analysis 165
Trajectory file format 77
Transfer of control, goto 197
Tree structure, printing the 32
Trouble shooting . 211
Truncated Newton 74
Turn, creating the secondary structure for

a . 28

U
Underscore notation 187

Units . 224
Updating the nonbonded list 41

V
Velocities, reading and writing 75
Verlet list . 41
Violation (analysis), analyze residual

violations . 161

W
Water models 30, 217
Water, immersing a solute in 29
Weights, intermolecular 51
Weights, intramolecular 51
Weights, potential function 51
Weights, restraining potentials 52
While loop . 196
Write dynamics . 82
Write HMC . 89
Write list to a file 175
Writing a snapshot of the system 75
Writing and reading the coordinates (and

velocities) . 75
Writing machine-independent trajectory

files . 77

Z
Z-DNA, specifying the secondary structure

of . 29
Zones, constraining 56

Impact 4.0 Command Reference Manual 335

Concept Index

336 Impact 4.0 Command Reference Manual

Table of Contents

1 Introduction to Impact . 1
1.1 A Brief History of Impact . 1

1.1.1 Commercial Versions . 1
1.1.2 Academic Versions . 2

1.2 Major Features . 3
1.3 Hardware Requirements. 3
1.4 Installation . 3
1.5 Input Files . 5
1.6 Structure File Formats . 10
1.7 Force Field . 11

1.7.1 OPLS-AA . 12
1.7.2 AMBER86 . 12
1.7.3 PFF . 13

1.8 Online Documentation . 16

2 Setup System. 17
2.1 Set commands . 17

2.1.1 Set Path . 17
2.1.2 Set Ffield (or Set Force) . 17
2.1.3 Set Noinvalidate . 18

2.2 Task Create. 19
2.2.1 Subtask Build . 19

2.2.1.1 Primary . 19
2.2.1.2 Primary type Protein . 20
2.2.1.3 Primary type DNA/RNA . 21
2.2.1.4 Primary type Ligand . 22
2.2.1.5 Primary type Auto . 24
2.2.1.6 Primary Ions . 26
2.2.1.7 Crosslink . 27
2.2.1.8 Newresidue . 27
2.2.1.9 Secondary . 28
2.2.1.10 Solvent . 29
2.2.1.11 Types . 30

2.2.2 Subtask Delete . 32
2.2.3 Subtask Print . 32
2.2.4 Subtask Read . 33

2.2.4.1 Xyz . 33
2.2.4.2 Internal . 33
2.2.4.3 Coordinates. 35
2.2.4.4 Bound Waters . 35

2.3 Task Setmodel . 37

Impact 4.0 Command Reference Manual i

2.3.1 Subtask Energy . 37
2.3.1.1 Periodic . 37
2.3.1.2 Molcutoff/Rescutoff . 37
2.3.1.3 Constraints . 38
2.3.1.4 Constraint file format. 39
2.3.1.5 Torsional Restraints . 40
2.3.1.6 Parm . 40

2.3.2 Subtask Read . 41
2.3.3 Subtask Print . 42
2.3.4 Subtask Setpotential . 42

2.3.4.1 Mmechanics . 42
2.3.4.2 Mmechanics Pff . 50
2.3.4.3 Type . 51
2.3.4.4 Weight . 51
2.3.4.5 Constraints . 52

2.3.5 Subtask Sgbp. 53
2.3.6 Subtask Mixture . 54
2.3.7 Subtask Solute . 55

2.3.7.1 Translate . 55
2.3.7.2 Read . 55

2.3.8 Subtask Solvent . 55
2.3.9 Subtask Zonecons . 56

2.3.9.1 Auto . 57
2.3.9.2 Freeze/Genbuffer . 57
2.3.9.3 Chain . 57
2.3.9.4 Resseq . 57
2.3.9.5 Residue . 57
2.3.9.6 Atom . 58
2.3.9.7 Sphere . 58
2.3.9.8 Example Zonecons Input . 58
2.3.9.9 Zonecons Keywords . 59

2.3.10 Subtask QMregion (QSite) . 60
2.3.10.1 QSite Overview . 61
2.3.10.2 QM protein region . 61
2.3.10.3 Individual QM Atoms . 66
2.3.10.4 QM Ions . 66
2.3.10.5 Basis set specifications. 66
2.3.10.6 QSite energy/minimization: . 67
2.3.10.7 QSite Transition State Optimization 68
2.3.10.8 Jaguar input section: . 69
2.3.10.9 Running QSite . 70

ii Impact 4.0 Command Reference Manual

3 Perform Simulations . 73
3.1 Task Minimize . 73

3.1.1 Subtask Steepest . 73
3.1.2 Subtask Conjugate . 73
3.1.3 Subtask Tnewton . 74
3.1.4 Subtask Input . 74
3.1.5 Subtask Run . 75
3.1.6 Subtask Plot . 75
3.1.7 Subtasks Read and Write . 75

3.2 Task Dynamics . 79
3.2.1 Subtask Input . 79
3.2.2 Subtask Run . 81
3.2.3 Subtask Plot . 82
3.2.4 Subtasks Read and Write . 82
3.2.5 Subtask Convert . 82

3.3 Task Montecarlo . 83
3.3.1 Subtask Sample . 83
3.3.2 Subtask Params . 83
3.3.3 Subtask Run (or calc) . 84
3.3.4 Subtask Plot . 84
3.3.5 Subtask Save . 84
3.3.6 Subtask Restart . 85
3.3.7 Subtasks Read and Write . 85

3.4 Task Hybrid Monte Carlo (HMC) . 86
3.4.1 HMC Methodology . 86
3.4.2 Subtask Input . 87
3.4.3 Subtask Run . 89
3.4.4 Subtask Plot . 89
3.4.5 Subtasks Read and Write . 89
3.4.6 Subtask Convert . 89

3.5 Task Linear Response Method (Liaison, LRM, or LIA) 91
3.5.1 Liaison Overview . 91
3.5.2 Subtask Assign . 93
3.5.3 Subtask Param . 94
3.5.4 Subtask Input . 94
3.5.5 Subtask Sample . 94
3.5.6 Scripts for Liaison simulation and fitting. 95
3.5.7 Scripts for Liaison binding energy prediction 97

3.6 Task Docking (DOCK or GLIDE) . 99
3.6.1 Description of the Docking Algorithm 99
3.6.2 Example 1: Set up grids . 103
3.6.3 Example 2: Single Ligand, Single Conformation 109
3.6.4 Example 3: Multiple Ligands, Flexible Docking 114
3.6.5 Example 4: Scoring in Place . 122
3.6.6 Example 5: Glide Constraints . 124

Impact 4.0 Command Reference Manual iii

3.6.7 Subtask Smooth . 127
3.6.8 Subtask Receptor . 129
3.6.9 Subtask Ligand . 135
3.6.10 Subtask Parameter . 139
3.6.11 Subtask Confgen . 140
3.6.12 Subtask Similarity . 141
3.6.13 Subtask Screen . 144
3.6.14 Subtask Minimize . 146
3.6.15 Subtask Final . 147
3.6.16 Subtask Scoring . 147
3.6.17 Subtask Report . 148
3.6.18 Subtask Run . 150
3.6.19 Results printed to Impact output . 151

4 Analysis Routines . 153
4.1 Task Analysis . 153

4.1.1 Subtask Energy. 153
4.1.1.1 Energy terms . 153
4.1.1.2 Solvation . 154
4.1.1.3 Analyze . 155

4.1.2 Subtask Qmme (QMMM) . 155
4.1.3 Subtask Measure . 155

4.1.3.1 Calc . 156
4.1.3.2 Monitor . 156

4.1.4 Subtask NOE . 157
4.1.5 Subtask Hbond . 157
4.1.6 Subtask Neighbor . 158
4.1.7 Subtask Rms . 158
4.1.8 Subtask Surface . 159
4.1.9 Subtask Tormap . 160
4.1.10 Subtask Violation . 161
4.1.11 Subtask Potfield . 161

4.1.11.1 Grid . 161
4.1.11.2 Include . 162
4.1.11.3 Read . 162
4.1.11.4 Rotate . 162
4.1.11.5 Run . 163
4.1.11.6 Analysis . 163
4.1.11.7 Plot . 163
4.1.11.8 Grwr . 163
4.1.11.9 Grrd . 164

4.2 Task Mdanalysis . 165
4.2.1 Subtask Input . 165

4.2.1.1 Trajectories . 165
4.2.1.2 Other qualifiers for input . 166

iv Impact 4.0 Command Reference Manual

4.2.2 Subtask File . 167
4.2.3 Subtask Static . 167

4.2.3.1 Rdf . 167
4.2.3.2 Adf . 168

4.2.4 Subtask Dynamics . 170
4.2.4.1 Solvent . 170
4.2.4.2 Solute . 171

4.3 Mini-Tasks: Nmodes and Rraman . 172
4.3.1 Task Nmodes . 172
4.3.2 Task Rraman . 172

4.4 Table. 174
4.4.1 Subtask Create . 174
4.4.2 Subtask Print . 174
4.4.3 Subtask Printoptions . 174
4.4.4 Subtask Plot . 175
4.4.5 Subtask Write . 175
4.4.6 Subtask Read . 176
4.4.7 Subtask Reset . 176
4.4.8 Subtasks Starttrack, Stoptrack and Traj 176
4.4.9 Subtask Restore . 177

4.5 Binning Subtasks. 178
4.5.1 Subtask Binsolvent . 178
4.5.2 Subtask Bindipole . 180
4.5.3 Subtask Binenergy . 181

5 Advanced Input Scripts 183
5.1 Background . 183

5.1.1 Lists . 184
5.1.2 Internal Lists . 185
5.1.3 Subsets of Lists . 187

5.1.3.1 Underscore notation . 187
5.1.3.2 Lists as arrays . 188
5.1.3.3 Colon notation . 188
5.1.3.4 Hyphen notation . 189

5.1.4 List Creation . 190
5.1.4.1 Put . 190
5.1.4.2 Create . 190

5.1.5 List Selection . 190
5.1.5.1 With . 190
5.1.5.2 Withonly . 190
5.1.5.3 Without . 190
5.1.5.4 By . 191

5.2 Operations on Data . 191
5.2.1 General Operations . 191
5.2.2 Relational Operators . 194

Impact 4.0 Command Reference Manual v

5.2.3 List Operators . 194
5.2.3.1 Restore . 195
5.2.3.2 Rand . 195
5.2.3.3 Smooth . 195
5.2.3.4 Histogram . 195
5.2.3.5 Distance . 196
5.2.3.6 Plotting lists . 196

5.3 Advanced Scripts . 196
5.3.1 Flow Control . 196

5.3.1.1 While . 196
5.3.1.2 If/else/endif . 197
5.3.1.3 Goto . 197

5.3.2 Subroutines . 197
5.3.3 Spawn . 198
5.3.4 Lists as Parameters . 198

5.4 Examples . 198
5.4.1 Backbone and Sidechain Torsion Angles 198
5.4.2 Hydrogen Bonding . 200
5.4.3 Surface Area and Accessibility . 203
5.4.4 Radius of Gyration . 207

6 Trouble Shooting . 211
6.1 Problems Getting Started . 211

6.1.1 Environment variable SCHRODINGER not set. 211
6.1.2 Bad residue label . 211

6.2 Runtime Problems . 212
6.2.1 SHAKE problems . 212
6.2.2 FMM problems . 213
6.2.3 Atom overlap problems . 213
6.2.4 Atomtyping problems . 214

Appendix A Impact Data and Parameter Files
. 217

A.1 Datafile Info. 217
A.2 Residue Database Description . 217

A.2.1 Residue File Example . 217
A.2.2 Title card . 218
A.2.3 Residue name . 218
A.2.4 Tree structure . 219
A.2.5 Charges . 219
A.2.6 Nonbonded array . 219
A.2.7 Excluded atom array . 220
A.2.8 Bonded atom list . 220
A.2.9 Bond angles . 220

vi Impact 4.0 Command Reference Manual

A.2.10 Dihedral angles . 221
A.3 Energy parameter file description . 221
A.4 Energy example . 223
A.5 Units . 224

Appendix B Task Plot . 227
B.1 Subtask Plot . 227
B.2 Subtask Read . 229
B.3 Subtask Write . 229
B.4 Subtask Rewrite . 229
B.5 Subtask Reread . 229

Appendix C Example Input Files 231
C.1 Tutorial Examples . 232

C.1.1 OPLS Minimization . 232
C.1.2 Solvation Energy of Small Organic Molecules 233
C.1.3 Dipeptide/H2O MD Simulation at Constant Energy 235
C.1.4 Dipeptide/H2O MD Simulation at Constant Pressure . . . 236
C.1.5 Monte Carlo Refinement of Protein NP-5 237
C.1.6 Building Primary and/or Secondary Protein Structure . . 239
C.1.7 B-DNA Tetramer . 240
C.1.8 Simulation from Maestro file . 241

C.2 Advanced Examples. 243
C.2.1 Various Frozen Atom Schemes . 243
C.2.2 Binding Energy . 244
C.2.3 Protein/Water Part I. Calculating the Protein Size 246
C.2.4 Protein/Water Part II. Placing a Protein into Water 250
C.2.5 PTI in water (9.0 Angstrom) . 253
C.2.6 MD Simulation with the Ewald method 255
C.2.7 Minimization Using Varying Energy Function Weights . . 256
C.2.8 Calculation of Some Energetic Quantities of a Helical Protein

. 258
C.2.9 Calculation of Some Structural Features of a Helical Protein

. 259
C.3 Analysis Examples . 261

C.3.1 Structural Comparison using RMS deviations. 261
C.3.2 Building a Two-Dimensional Torsion Map 261
C.3.3 Electrostatic Potential and Hydration Energy Differences

. 266
C.3.4 Molecular Dynamics Analysis (NVE Ensemble) 275
C.3.5 Dipeptide/H2O MD Simulation and Analysis (NPT

Ensemble) . 287
C.3.6 Surface Area Versus Solvation Energy for a Dipeptide . . . 294
C.3.7 Dynamical Surface Area Calculation 297

Impact 4.0 Command Reference Manual vii

C.3.8 Surface Area Statistics for Rhizopuspepsin 299
C.3.9 Normal Modes of Excited State Imidazole 300
C.3.10 Normal Modes for Methylamine . 303

C.4 New Techniques . 305
C.4.1 MD Simulation with the FMM . 305
C.4.2 Minimization using Implict Solvent (SGB) 306
C.4.3 Minimization using Implict Solvent (PBF) 308
C.4.4 S-Walking method with HMC . 309
C.4.5 Liaison: Linear Response Method Simulations 311
C.4.6 QSite: QM-MM Simulations . 313
C.4.7 Polarizable Force Field Test . 316
C.4.8 Glide Example . 318

Function Index . 321

Concept Index . 329

viii Impact 4.0 Command Reference Manual

	Introduction to Impact
	A Brief History of Impact
	Commercial Versions
	Academic Versions

	Major Features
	Hardware Requirements
	Installation
	Input Files
	Structure File Formats
	Force Field
	OPLS-AA
	AMBER86
	PFF

	Online Documentation

	Setup System
	Set commands
	Set Path
	Set Ffield (or Set Force)
	Set Noinvalidate

	Task Create
	Subtask Build
	Primary
	Primary type Protein
	Primary type DNA/RNA
	Primary type Ligand
	Primary type Auto
	Primary Ions
	Crosslink
	Newresidue
	Secondary
	Solvent
	Types

	Subtask Delete
	Subtask Print
	Subtask Read
	Xyz
	Internal
	Coordinates
	Bound Waters

	Task Setmodel
	Subtask Energy
	Periodic
	Molcutoff/Rescutoff
	Constraints
	Constraint file format
	Torsional Restraints
	Parm

	Subtask Read
	Subtask Print
	Subtask Setpotential
	Mmechanics
	Mmechanics Pff
	Type
	Weight
	Constraints

	Subtask Sgbp
	Subtask Mixture
	Subtask Solute
	Translate
	Read

	Subtask Solvent
	Subtask Zonecons
	Auto
	Freeze/Genbuffer
	Chain
	Resseq
	Residue
	Atom
	Sphere
	Example Zonecons Input
	Zonecons Keywords

	Subtask QMregion (QSite)
	QSite Overview
	QM protein region
	Individual QM Atoms
	QM Ions
	Basis set specifications.
	QSite energy/minimization:
	QSite Transition State Optimization
	Jaguar input section:
	Running QSite

	Perform Simulations
	Task Minimize
	Subtask Steepest
	Subtask Conjugate
	Subtask Tnewton
	Subtask Input
	Subtask Run
	Subtask Plot
	Subtasks Read and Write

	Task Dynamics
	Subtask Input
	Subtask Run
	Subtask Plot
	Subtasks Read and Write
	Subtask Convert

	Task Montecarlo
	Subtask Sample
	Subtask Params
	Subtask Run (or calc)
	Subtask Plot
	Subtask Save
	Subtask Restart
	Subtasks Read and Write

	Task Hybrid Monte Carlo (HMC)
	HMC Methodology
	Subtask Input
	Subtask Run
	Subtask Plot
	Subtasks Read and Write
	Subtask Convert

	Task Linear Response Method (Liaison, LRM, or LIA)
	Liaison Overview
	Subtask Assign
	Subtask Param
	Subtask Input
	Subtask Sample
	Scripts for Liaison simulation and fitting
	Scripts for Liaison binding energy prediction

	Task Docking (DOCK or GLIDE)
	Description of the Docking Algorithm
	Example 1: Set up grids
	Example 2: Single Ligand, Single Conformation
	Example 3: Multiple Ligands, Flexible Docking
	Example 4: Scoring in Place
	Example 5: Glide Constraints
	Subtask Smooth
	Subtask Receptor
	Subtask Ligand
	Subtask Parameter
	Subtask Confgen
	Subtask Similarity
	Subtask Screen
	Subtask Minimize
	Subtask Final
	Subtask Scoring
	Subtask Report
	Subtask Run
	Results printed to Impact output

	Analysis Routines
	Task Analysis
	Subtask Energy
	Energy terms
	Solvation
	Analyze

	Subtask Qmme (QMMM)
	Subtask Measure
	Calc
	Monitor

	Subtask NOE
	Subtask Hbond
	Subtask Neighbor
	Subtask Rms
	Subtask Surface
	Subtask Tormap
	Subtask Violation
	Subtask Potfield
	Grid
	Include
	Read
	Rotate
	Run
	Analysis
	Plot
	Grwr
	Grrd

	Task Mdanalysis
	Subtask Input
	Trajectories
	Other qualifiers for input

	Subtask File
	Subtask Static
	Rdf
	Adf

	Subtask Dynamics
	Solvent
	Solute

	Mini-Tasks: Nmodes and Rraman
	Task Nmodes
	Task Rraman

	Table
	Subtask Create
	Subtask Print
	Subtask Printoptions
	Subtask Plot
	Subtask Write
	Subtask Read
	Subtask Reset
	Subtasks Starttrack, Stoptrack and Traj
	Subtask Restore

	Binning Subtasks
	Subtask Binsolvent
	Subtask Bindipole
	Subtask Binenergy

	Advanced Input Scripts
	Background
	Lists
	Internal Lists
	Subsets of Lists
	Underscore notation
	Lists as arrays
	Colon notation
	Hyphen notation

	List Creation
	Put
	Create

	List Selection
	With
	Withonly
	Without
	By

	Operations on Data
	General Operations
	Relational Operators
	List Operators
	Restore
	Rand
	Smooth
	Histogram
	Distance
	Plotting lists

	Advanced Scripts
	Flow Control
	While
	If/else/endif
	Goto

	Subroutines
	Spawn
	Lists as Parameters

	Examples
	Backbone and Sidechain Torsion Angles
	Hydrogen Bonding
	Surface Area and Accessibility
	Radius of Gyration

	Trouble Shooting
	Problems Getting Started
	Environment variable SCHRODINGER not set.
	Bad residue label

	Runtime Problems
	SHAKE problems
	FMM problems
	Atom overlap problems
	Atomtyping problems

	Impact Data and Parameter Files
	Datafile Info
	Residue Database Description
	Residue File Example
	Title card
	Residue name
	Tree structure
	Charges
	Nonbonded array
	Excluded atom array
	Bonded atom list
	Bond angles
	Dihedral angles

	Energy parameter file description
	Energy example
	Units

	Task Plot
	Subtask Plot
	Subtask Read
	Subtask Write
	Subtask Rewrite
	Subtask Reread

	Example Input Files
	Tutorial Examples
	OPLS Minimization
	Solvation Energy of Small Organic Molecules
	Dipeptide/H2O MD Simulation at Constant Energy
	Dipeptide/H2O MD Simulation at Constant Pressure
	Monte Carlo Refinement of Protein NP-5
	Building Primary and/or Secondary Protein Structure
	B-DNA Tetramer
	Simulation from Maestro file

	Advanced Examples
	Various Frozen Atom Schemes
	Binding Energy
	Protein/Water Part I. Calculating the Protein Size
	Protein/Water Part II. Placing a Protein into Water
	PTI in water (9.0 Angstrom)
	MD Simulation with the Ewald method
	Minimization Using Varying Energy Function Weights
	Calculation of Some Energetic Quantities of a Helical Protein
	Calculation of Some Structural Features of a Helical Protein

	Analysis Examples
	Structural Comparison using RMS deviations
	Building a Two-Dimensional Torsion Map
	Electrostatic Potential and Hydration Energy Differences
	Molecular Dynamics Analysis (NVE Ensemble)
	Dipeptide/H2O MD Simulation and Analysis (NPT Ensemble)
	Surface Area Versus Solvation Energy for a Dipeptide
	Dynamical Surface Area Calculation
	Surface Area Statistics for Rhizopuspepsin
	Normal Modes of Excited State Imidazole
	Normal Modes for Methylamine

	New Techniques
	MD Simulation with the FMM
	Minimization using Implict Solvent (SGB)
	Minimization using Implict Solvent (PBF)
	S-Walking method with HMC
	Liaison: Linear Response Method Simulations
	QSite: QM-MM Simulations
	Polarizable Force Field Test
	Glide Example

	Function Index
	Concept Index

